Một vật sáng AB đặt cách màn chắn một khoảng L = 90 cm. Trong khoảng giữa vật sáng

1.8 K

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Vật lí gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Vật lí. Mời các bạn đón xem:

Top 1000 câu hỏi thường gặp môn Vật lí (Phần 6)

Bài 63: Một vật sáng AB đặt cách màn chắn một khoảng L = 90 cm. Trong khoảng giữa vật sáng và màn chắn đặt một thấu kính hội tụ có tiêu cự f sao cho trục chính của thấu kính vuông góc với AB và màn. Khoảng cách giữa 2 vị trí đặt thấu kính để ảnh rõ nét trên màn chắn là l = 30 cm. Tính tiêu cự của thấu kính hội tụ. Cho biết \(\frac{1}{f} = \frac{1}{d} + \frac{1}{{d'}}\) (d là khoảng cách từ vật đến thấu kính; d’ là khoảng cách từ ảnh đến thấu kính).

A. 10 cm.

B. 20 cm.

C. 30 cm.

D. 40 cm.

Lời giải

Đáp án đúng: B

Để có được ảnh rõ nét trên màn tức là di chuyển thấu kính đến vị trí mà màn chắn hứng được ảnh thật của vật.

Ta có 2 vị trí có thể cho ảnh rõ nét là khi vật cách thấu kính một đoạn d hoặc d' = L - d sao cho thỏa mãn: \(\frac{1}{f} = \frac{1}{d} + \frac{1}{{d'}}\)\( \Rightarrow f\left( {d + d'} \right) = d.d'\) (2)

Ta có: L = d + d’; l = d – d’

\( \Rightarrow {L^2} - {l^2} = {\left( {d + d'} \right)^2} - {\left( {d - d'} \right)^2} = 4.d.d'\left( 1 \right)\)

Thay (2) vào (1) được: \({L^2} - {l^2} = 4f\left( {d + d'} \right) = 4f.L\)\( \Rightarrow f = \frac{{{L^2} - {l^2}}}{{4L}}\)

Thay L = 90 cm, l = 30 cm vào (*) được: f = 20 cm.

Đánh giá

0

0 đánh giá