Giải hệ phương trình: x - 3y = 2 (1) và -2x + 5y = 1 (2)

196

Với giải Luyện tập 1 trang 20 Toán 9 Tâp 1 Cánh diều chi tiết trong Bài 3: Giải hệ hai phương trình bậc nhất hai ẩn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 3: Giải hệ hai phương trình bậc nhất hai ẩn

Luyện tập 1 trang 20 Toán 9 Tâp 1Giải hệ phương trình: {x3y=2(1)2x+5y=1(2)

Lời giải:

+ Từ phương trình (1), ta có: x=2+3y (3)

+ Thay vào phương trình (2), ta được: 2.(2+3y)+5y=1 (4)

+ Giải phương trình (4):

2(2+3y)+5y=146y+5y=1y=5y=5

+ Thay giá trị y=5 vào phương trình (3), ta có:

x=2+3.(5)=215=13

Vậy hệ phương trình đã cho có nghiệm (x;y)=(13;5).

Lý Thuyết Giải hệ phương trình bằng phương pháp thế

Bước 1: (Thế) Từ một phương trình của hệ đã cho, ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình còn lại của hệ để được phương trình một ẩn.

Bước 2. (Giải phương trình một ẩn) Giải phương trình (một ẩn) nhận được ở Bước 1 để tìm giá trị của ẩn đó.

Bước 3. (Tìm ẩn còn lại và kết luận) Thay giá trị vừa tìm được của ẩn đó ở Bước 2 vào biểu thức biểu diễn một ẩn theo ẩn kia ở Bước 1 để tìm giá trị của ẩn còn lại. Từ đó, ta tìm được nghiệm của hệ phương trình đã cho.

Ví dụ:

1. Hệ phương trình {2xy=3x+2y=4 được giải bằng phương pháp thế như sau:

Từ phương trình thứ nhất của hệ, ta có y=2x3.

Thế vào phương trình thứ hai của hệ, ta được x+2(2x3)=4

Giải phương trình x+2(2x3)=4, ta được:

x+2(2x3)=4

5x6=4

x=2.

Thay x=2 vào phương trình y=2x3, ta có: y=2.23=1.

Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y)=(2;1).

2. Hệ phương trình {xy=22x2y=8 được giải bằng phương pháp thế như sau:

Từ phương trình thứ nhất của hệ, ta có x=y2.

Thế vào phương trình thứ hai của hệ, ta được

2(y2)2y=8

0y4=8.

Do không có giá trị vào của y thỏa mãn hệ thức 0y4=8 nên hệ phương trình vô nghiệm.

3. Hệ phương trình {x+y=23x3y=6 được giải bằng phương pháp thế như sau:

Từ phương trình thứ nhất của hệ, ta có y=x2.

Thế vào phương trình thứ hai của hệ, ta được

3x3(x2)=6

0x=0.

Ta thấy mọi giá trị của x đều thỏa mãn 0x=0.

Với giá trị tùy ý của x, giá trị tương ứng của y được tính bởi y=x2.

Vậy hệ phương trình có nghiệm là (x;x2) với xR tùy ý.

Chú ý: Hệ phương trình bậc nhất hai ẩn có thể có nghiệm duy nhất hoặc vô nghiệm hoặc vô số nghiệm

Đánh giá

0

0 đánh giá