Thực hiện lần lượt các yêu cầu sau để tính số mililit dung dịch acid HCl nồng độ 20%

452

Với giải Vận dụng 2 trang 16 Toán 9 Tập 1 Kết nối tri thức chi tiết trong Bài 2: Giải hệ hai phương trình bậc nhất hai ẩn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 2: Giải hệ hai phương trình bậc nhất hai ẩn

Vận dụng 2 trang 16 Toán 9 Tập 1: Thực hiện lần lượt các yêu cầu sau để tính số mililit dung dịch acid HCl nồng độ 20% và số mililit dung dịch acid HCl nồng độ 5% cần dùng để pha chế 2 lít dung dịch acid HCl nồng độ 10%.

a) Gọi x là số mililit dung dịch HCl nồng độ 20%, y là số mililit dung dịch HCl nồng độ 5% cần lấy. Hãy biểu thị qua x và y:

- Thể tích của dung dịch HCl 10% nhận được sau khi trộn lẫn hai dung dịch acid ban đầu.

- Tổng số gam acid HCl nguyên chất có trong hai dung dịch acid này.

b) Sử dụng kết quả ở câu a, hãy lập một hệ hai phương trình bậc nhất hai ẩn là x, y. Giải hệ phương trình này để tính số mililit cần lấy của mỗi dung dịch HCl ở trên.

Lời giải:

Khối lượng riêng của dung dịch HCl là 1,49 g/cm3

Đổi 2l = 2000ml

Khối lượng mol của HCl: 36,5 g/mol

a) Thể tích của dung dịch HCl 10% nhận được sau khi trộn lẫn hai dung dịch acid ban đầu là 2 lít nên ta có phương trình: x+y=2000(ml).

Tổng số gam HCl nguyên chất sau pha là:

36,5.0,008.x.103+36,5.0,002y.103=36,5.0,008 hay 36,5.0,008.x.103+36,5.0,002y.103=0,292 (gam)

b) Từ câu a ta có hệ phương trình {x+y=20000,008.103.36,5.x+0,002.103.36,5y=0,292 hay {x+y=20004x+y=4000

Từ phương trình đầu ta có x=2000y thay vào phương trình thứ hai ta được 4(2000y)+y=4000 suy ra 80003y=4000 nên y=40003. Thế y=40003 vào phương trình thứ nhất ta được x=20003.

Vậy cần lấy 20003(ml) dung dịch HCl 20% và 40003(ml) dung dịch HCl 5%.

Lý thuyết Cách tìm nghiệm của hệ hai phương trình bằng máy tính cầm tay

Ta sử dụng loại máy tính cầm tay (MTCT) có chức năng này (có phím MODE/MENU). Dưới đây là hướng dẫn cụ thể với máy Fx-580VNX.

Ta viết phương trình cần giải dưới dạng {a1x+b1y=c1a2x+b2y+c2.

Ví dụ: Giải hệ {2x+y4=02x+y=0, ta viết nó dưới dạng {2x+y=42x+y=0.

Khi đó, ta có a1=2b1=1c1=4a2=2b2=1c2=0. Lần lượt thực hiện các bước sau:

Bước 1. Vào chức năng hệ hai phương trình bậc nhất hai ẩn bằng cách nhấn MENU rồi bấm phím 9 để chọn tính năng Equation/Func (Ptrình/HệPtrình).

Lý thuyết Giải hệ hai phương trình bậc nhất hai ẩn (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 1)

Bấm phím để chọn Simul Equation (hệ phương trình).

Lý thuyết Giải hệ hai phương trình bậc nhất hai ẩn (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 2)

Cuối cùng, bấm phím 2 để giải hệ hai phương trình bậc nhất

Lý thuyết Giải hệ hai phương trình bậc nhất hai ẩn (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 3)

Bước 2. Ta nhập các hệ số a1,b1,c1,a2,b2,c2 bằng cách bấm

Lý thuyết Giải hệ hai phương trình bậc nhất hai ẩn (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 4)

Bước 3. Sau khi nhập xong, ta bấm phím =, màn hình hiện x = 1; tiếp tục bấm =, màn hình hiện y = 3. Ta hiểu nghiệm của hệ phương trình là (-1;2).

Chú ý:

- Muốn xóa số vừa mới nhập thì bấm phím AC, muốn thay đổi số đã nhập ở vị trí nào đó thì di chuyển con trỏ đến vị trí đó rồi nhập số mới.

- Bấm phím ▲ hay ▼ để chuyển hiển thị các giá trị của x và y trong kết quả.

- Nếu máy báo Infinite Solution thì hệ phương trình đã cho có vô số nghiệm.

Nếu máy báo No Solution thì hệ phương trình đã cho vô nghiệm.

Đánh giá

0

0 đánh giá