Với giải Vận dụng 1 trang 12 Toán 9 Tập 1 Kết nối tri thức chi tiết trong Bài 2: Giải hệ hai phương trình bậc nhất hai ẩn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:
Giải bài tập Toán 9 Bài 2: Giải hệ hai phương trình bậc nhất hai ẩn
Vận dụng 1 trang 12 Toán 9 Tập 1: Xét bài toán trong tình huống mở đầu. Gọi x là số luống trong vườn, y là số cây cải bắp trồng ở mỗi luống
a) Lập hệ phương trình đối với hai ẩn x,y.
b) Giải hệ phương trình nhận được ở câu a để tìm câu trả lời cho bài toán.
Lời giải:
a) Số cây cải trồng trong vườn là
Nếu tăng thêm 8 luống, tức số luống sẽ là ; số bắp cải trồng trong 1 luống giảm đi 3 tức là số cây trong 1 luống sẽ là , số bắp cải của cả vườn ít sẽ ít đi 108 cây nên ta có suy ra
Nếu giảm đi 4 luống, tức số luống sẽ là , nhưng mỗi luống sẽ trồng thêm 2 cây, tức số cây trong 1 luống sẽ là thì số bắp cải cả vườn sẽ tăng thêm 64 cây nên ta có suy ra
Nên ta có hệ phương trình
b) Ta có suy ra thế vào phương trình thứ hai của hệ ta được suy ra nên
Với nên
Vậy số luống là 60, số cây trong 1 luống là 12 cây.
Lý thuyết Cách giải hệ phương trình bằng phương pháp thế
Bước 1. Từ một phương trình của hệ, biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình còn lại của hệ để được phương trình chỉ còn chứa một ẩn. Bước 2. Giải phương trình một ẩn vừa nhận được, từ đó suy ra nghiệm của hệ đã cho. |
Lưu ý: Tùy theo hệ phương trình, ta có thể lựa chọn cách biểu diễn x theo y hoặc y theo x.
Ví dụ:
1. Hệ phương trình được giải bằng phương pháp thế như sau:
Từ phương trình thứ nhất của hệ, ta có .
Thế vào phương trình thứ hai của hệ, ta được hay , suy ra .
Từ đó .
Vậy hệ phương trình đã cho có nghiệm là .
2. Hệ phương trình được giải bằng phương pháp thế như sau:
Từ phương trình thứ nhất của hệ, ta có .
Thế vào phương trình thứ hai của hệ, ta được hay .
Do không có giá trị vào của y thỏa mãn hệ thức nên hệ phương trình vô nghiệm.
3. Hệ phương trình được giải bằng phương pháp thế như sau:
Từ phương trình thứ nhất của hệ, ta có .
Thế vào phương trình thứ hai của hệ, ta được hay .
Ta thấy mọi giá trị của x đều thỏa mãn .
Với giá trị tùy ý của x, giá trị tương ứng của y được tính bởi .
Vậy hệ phương trình có nghiệm là với tùy ý.
Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:
Xem thêm các bài giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:
Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn
Bài 2. Giải hệ hai phương trình bậc nhất hai ẩn