Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 9 Bài 3: Giải bài toán bằng cách lập hệ phương trình chi tiết sách Toán 9 Tập 1 Kết nối tri thức giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 9. Mời các bạn đón xem:
Giải bài tập Toán 9 Bài 3: Giải bài toán bằng cách lập hệ phương trình
Bài toán mở đầu: Một vật có khối lượng 124 g và thể tích là hợp kim của đồng và kẽm. Tính xem trong đó có bao nhiêu gam đồng và bao nhiêu gam kẽm, biết rằng đồng nặng 8,9 g và kẽm nặng 7 g.
HĐ1 trang 21 Toán 9 Tập 1: Biểu thị khối lượng của vật qua x và y.
Lời giải:
Phương trình biểu thị khối lượng của vật qua x và y là
HĐ2 trang 21 Toán 9 Tập 1: Biểu thị thể tích của vật qua x và y.
Lời giải:
Thể tích của vật là nên ta có phương trình
Lời giải:
Qua hoạt động 1 và hoạt động 2, ta có hệ phương trình
Từ phương trình đầu ta có thay vào phương trình thứ hai ta được nên hay
Với thì ta có
Vậy vật đó có 89 g đồng và 35 gam kẽm.
Hướng dẫn. Gọi là vận tốc của xe tải và là vận tốc xe khách Chú ý rằng hai xe (đi ngược chiều) gặp nhau khi tổng quãng đường hai xe đã đi bằng 170 km.
Lời giải:
Gọi là vận tốc của xe tải và là vận tốc xe khách
Thời gian di chuyển của xe khách từ HCM đến điểm gặp nhau là 1 giờ 40 phút + 40 phút = 2 giờ 20 phút (giờ) nên quãng đường xe khách đi được là
Thời gian di chuyển của xe tải từ Cần Thơ đến điểm gặp nhau là 40 phút (giờ) nên quãng đường xe tải đi được là
Vì hai xe di chuyển ngược chiều nên tổng quãng đường hai xe đi được chính là khoảng cách từ HCM đến Cần Thơ nên ta có phương trình:
Mỗi giờ xe khách đi nhanh hơn xe tải 15km nên ta có phương trình
Từ đó ta có hệ phương trình:
Từ phương trình thứ hai ta có thế vào phương trình đầu ta được suy ra nên
Với ta có
Vậy vận tốc của xe tải là 39 km/h và vận tốc của xe khách là 54 km/h.
Lời giải:
Gọi thời gian chảy đầy bể của vòi thứ nhất và vòi thứ hai lần lượt là giờ
Một giờ vòi thứ nhất chảy được (bể).
Một giờ vòi thứ hai chảy được (bể).
Hai vòi nước cùng chảy vào một bể không có nước thì bể sẽ đầy trong 1 giờ 20 phút (1 giờ 20 phút giờ) nên 1 giờ cả hai vòi chảy được (bể).
Nên ta có phương trình
Mở riêng vòi thứ nhất trong 10 phút (10 phút giờ) thì vòi thứ nhất chảy được (bể).
Vòi thứ hai trong 12 phút (12 phút giờ) thì vòi thứ hai chảy được (bể).
Thì hai vòi chảy được bể nước.
Nên ta có phương trình
Từ (1) và (2) ta có hệ phương trình
Nhân cả hai vế của phương trình thứ nhất với ta được , từ đó ta có hệ phương trình
Trừ từng vế của hai phương trình ta được suy ra nên
Với thay vào phương trình (1) ta được nên
Vậy vòi thứ nhất chảy riêng cần 2 giờ thì đầy bể, vòi thứ hai cần 4 giờ thì đầy bể.
Bài tập
Lời giải:
Gọi chữ số N cần tìm có dạng
Tổng của hai chữ số đó bằng 12 nên ta có phương trình
Hai chữ số viết theo thứ tự ngược lại ta được số mới có dạng
Ta được số mới lớn hơn số đã cho là 36 đơn vị nên ta có phương trình
Nên suy ra hay
Từ đó ta có hệ phương trình
Cộng từng vế của hai phương trình ta có hay nên
Thay vào phương trình thứ nhất ta có nên
Vậy số N cần tìm là 48
Em hãy tìm lại các số bị mờ trong hai ô đó.
Lời giải:
Gọi số lần bắn đạt 8 điểm là x (lần), số lần bắn đạt 6 điểm là y (lần)
Tổng số lần bắn là 100 lần nên ta có phương trình hay
Điểm trung bình của 100 lần bắn là 8,69 điểm nên ta có phương trình:
hay
Từ đó ta có hệ phương trình hay
Nhân cả hai vế của phương trình thứ nhất với 3 ta được nên ta có hệ phương trình
Trừ từng vế của hai phương trình ta được hay nên
Với thay vào phương trình đầu ta được
Vậy ta có bảng
Hãy dùng máy tính cầm tay kiểm tra lại kết quả thu được.
Lời giải:
Gọi số thóc của hai đơn vị thu hoạch được trong năm ngoái lần lượt là x, y (tấn thóc)
Năm ngoái, hai đơn vị sản xuất nông nghiệp thu hoạch được 3 600 tấn thóc nên ta có phương trình (tấn thóc)
Năm nay đội thứ nhất làm vượt mức 15% so với năm ngoái nên năm nay đội sẽ thu hoạch được (tấn thóc)
Đội thứ hai làm vượt mức 12% so với năm ngoái nên năm nay đội sẽ thu hoạch được (tấn thóc)
Nên năm nay hai đội thu hoạch được 4 095 tấn thóc, ta có phương trình
Từ đó ta có hệ phương trình hay
Vậy năm nay đội thứ nhất thu hoạch được tấn thóc.
Năm nay đội thứ hai thu hoạch được tấn thóc.
Lời giải:
Gọi thời gian hoàn thành công việc của hai người thợ lần lượt là x,y (giờ)
1 giờ người thợ thứ nhất làm được công việc
1 giờ người thứ hai làm được công việc
Hai người thợ cùng làm một công việc trong 16 giờ thì xong nên một giờ hai người làm được (công việc).
Nên ta có phương trình
Người thứ nhất làm trong 3 giờ làm được công việc
Người thứ hai làm trong 6 giờ làm được công việc
Thì cả hai người hoàn thành được công việc nên ta có phương trình
Từ đó ta có hệ phương trình
Nhân cả hai vế của phương trình thứ nhất với 3 ta được từ đó ta có hệ phương trình
Trừ từng vế của hai phương trình ta có hay nên
Thay vào phương trình đầu ta có
Vậy người thứ nhất cần làm trong 24 giờ, người thứ hai cần làm trong 48 giờ thì xong công việc.
Xem thêm các bài giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:
Bài 3. Giải bài toán bằng cách lập hệ phương trình
Bài 4. Phương trình quy về phương trình bậc nhất một ẩn
Bài 5. Bất đẳng thức và tính chất
Lý thuyết Giải bài toán bằng cách lập hệ phương trình
Các bước giải bài toán bằng cách lập hệ phương trình:
Bước 1. Lập hệ phương trình: - Chọn ẩn số (thường chọn hai ẩn số) và đặt điều kiện thích hợp cho các ẩn số; - Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết; - Lập hệ phương trình biểu thị mối quan hệ giữa các đại lượng. Bước 2. Giải hệ phương trình. Bước 3. Trả lời: Kiểm tra xem trong các nghiệm tìm được của hệ phương trình, nghiệm nào thỏa mãn, nghiệm nào không thỏa mãn điều kiện của ẩn, rồi kết luận. |
Ví dụ 1: Giải bài toán bằng cách lập hệ phương trình
Hai xe cùng khởi hành một lúc ở hai tỉnh A và tỉnh B cách nhau 60km. Nếu đi ngược chiều thì gặp nhau sau 1 giờ; nếu đi cùng chiều thì xe đi nhanh sẽ đuổi kịp xe kia sau 3 giờ. Tìm vận tốc mỗi xe.
Lời giải:
Gọi x là vận tốc của xe đi nhanh, y là vận tốc của xe đi chậm ( và x, y tính bằng km/h).
Sau 1 giờ hai xe gặp nhau, nên ta có phương trình:
x + y = 60
Sau 3 giờ mỗi xe đi được 3x; 3y ( km) và gặp nhau, nên ta có phương trình:
3x – 3y = 60.
Vậy, ta có hệ phương trình:
( thỏa mãn các điều kiện đã nêu)
Vậy xe đi nhanh có vận tốc , xe đi chậm có vận tốc .
Ví dụ 2: Giải bài toán bằng cách lập hệ phương trình
Tìm một số có hai chữ số, biết rằng tổng của hai chữ số ấy bằng 12 và khi thay đổi thứ tự hai chữ số thì được một số lớn hơn số cũ là 18.
Lời giải:
Gọi x, y là các chữ số hàng chục và hàng đơn vị của số đã cho (, ,)
Khi đó hai số có dạng và
Ta có hệ phương trình:
Vậy số cần tìm là 57.