Hai lớp 9A và 9B có tổng số 82 học sinh. Trong dịp Tết trồng cây năm 2022

383

Với giải Hoạt động khám phá 3 trang 19 Toán 9 Tập 1 Chân trời sáng tạo chi tiết trong Bài 3: Giải hệ hai phương trình bậc nhất hai ẩn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 3: Giải hệ hai phương trình bậc nhất hai ẩn

Hoạt động khám phá 3 trang 19 Toán 9 Tập 1Hai lớp 9A và 9B có tổng số 82 học sinh. Trong dịp Tết trồng cây năm 2022, mỗi học sinh lớp 9A trồng được 3 cây, mỗi học sinh lớp 9B trồng được 4 cây nên cả hai lớp trồng được tổng số 288 cây.

Gọi x, y lần lượt là số học sinh lớp 9A và 9B (xN,yN).

a) Từ dữ liệu đã cho, lập hai phương trình bậc nhất hai ẩn biểu thị số học sinh hai lớp và số cây trồng được.

b) Giải hệ hai phương trình bậc nhất hai ẩn và cho biết mỗi lớp có bao nhiêu học sinh

Lời giải:

a) Tổng số học sinh 2 lớp là 82 học sinh ta có phương trình: x + y = 82

Mỗi HS lớp 9A trồng được 3 cây, mỗi HS lớp 9B trồng được 4 cây mà tổng số cây trồng được của cả 2 lớp là 288 cây ta có phương trình: 3x + 4y = 288

b) Ta có hệ phương trình {x+y=823x+4y=288

{x=82y3.(82y)+4y=288{x=82y2463y+4y=288{x=82yy=42{x=40y=42

Vậy lớp 9A có 40 HS, lớp 9B có 42 HS.

Lý Thuyết Giải bài toán bằng cách lập hệ phương trình

Các bước giải bài toán bằng cách lập hệ phương trình:

Bước 1. Lập hệ phương trình:

- Chọn hai ẩn biểu thị hai đại lượng chưa biết và đặt điều kiện thích hợp cho các ẩn số;

- Biểu diễn các đại lượng liên quan theo các ẩn và các đại lượng đã biết;

- Lập hệ hai phương trình bậc nhất hai ẩn biểu thị mối quan hệ giữa các đại lượng.

Bước 2. Giải hệ phương trình nhận được.

Bước 3. Kiểm tra nghiệm tìm được ở bước 2 có thỏa mãn điều kiện của ẩn hay không, rồi trả lời bài toán.

Ví dụ 1: Giải bài toán bằng cách lập hệ phương trình

Hai xe cùng khởi hành một lúc ở hai tỉnh A và tỉnh B cách nhau 60km. Nếu đi ngược chiều thì gặp nhau sau 1 giờ; nếu đi cùng chiều thì xe đi nhanh sẽ đuổi kịp xe kia sau 3 giờ. Tìm vận tốc mỗi xe.

Lời giải:

Gọi x là vận tốc của xe đi nhanh, y là vận tốc của xe đi chậm ( x,y>0;x>y và x, y tính bằng km/h).

Sau 1 giờ hai xe gặp nhau, nên ta có phương trình:

x + y = 60

Sau 3 giờ mỗi xe đi được 3x; 3y ( km) và gặp nhau, nên ta có phương trình:

3x – 3y = 60.

Vậy, ta có hệ phương trình:

{x+y=603x3y=60{3x+3y=1803x3y=60

{x=40y=20

(x=40;y=20 thỏa mãn các điều kiện đã nêu)

Vậy xe đi nhanh có vận tốc 40(km/h), xe đi chậm có vận tốc 20(km/h).

Ví dụ 2: Giải bài toán bằng cách lập hệ phương trình

Tìm một số có hai chữ số, biết rằng tổng của hai chữ số ấy bằng 12 và khi thay đổi thứ tự hai chữ số thì được một số lớn hơn số cũ là 18.

Lời giải:

Gọi x, y là các chữ số hàng chục và hàng đơn vị của số đã cho (xN,0<x9 ,0x9)

Khi đó hai số có dạng xy¯=10x+y và yx¯=10y+x.

Ta có hệ phương trình:

{x+y=1210y+x18=10x+y

{x+y=12xy=2

{x=5y=7

Vậy số cần tìm là 57.

Đánh giá

0

0 đánh giá