Trong không gian Oxyz, cho đường thẳng d đi qua điểm M0(x0; y0; z0) cố định

86

Với giải Hoạt động khám phá 2 trang 44 Toán 12 Tập 2 Chân trời sáng tạo chi tiết trong Bài 2: Phương trình đường thẳng trong không gian giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 2: Phương trình đường thẳng trong không gian

Hoạt động khám phá 2 trang 44 Toán 12 Tập 2: Trong không gian Oxyz, cho đường thẳng d đi qua điểm M0(x0; y0; z0) cố định và có vectơ chỉ phương là a=a1;a2;a3 khác 0.

a) Giải thích tại sao ta có thể viết: M ∈ d ⇔ M0M=ta,t

b) Với M(x; y; z) thuộc d, hãy tính x, y, z theo x0, y0, z0 và a1, a2, a3.

Hoạt động khám phá 2 trang 44 Toán 12 Tập 2 Chân trời sáng tạo | Giải Toán 12

Lời giải:

a) Ta có M ∈ d thì M0M cùng phương với a. Do đó M0M=ta,t.

b) Ta có M0M=xx0;yy0;zz0.

Mà M0M=ta nên xx0=a1tyy0=a2tzz0=a3tx=x0+a1ty=y0+a2tz=z0+a3t,t.

Đánh giá

0

0 đánh giá