Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 12 Bài 2: Công thức xác suất toàn phần và công thức Bayes chi tiết sách Toán 12 Tập 2 Chân trời sáng tạo giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 12. Mời các bạn đón xem:
Giải bài tập Toán 12 Bài 2: Công thức xác suất toàn phần và công thức Bayes
Lời giải:
Sau khi học xong bài này, ta giải quyết bài toán này như sau:
Gọi A là biến cố “Người làm xét nghiệm có kết quả dương tính” và B là biến cố “Người làm xét nghiệm thực sự nhiễm vi rút”.
Ta có P(A|B) = 0,762; ; P(B) = 0,01.
Suy ra ,
Theo công thức xác suất toàn phần ta có:
= 0,01.0,762 + 0,99.0,009 = 0,01653.
Xác suất một người thực sự nhiễm virus khi người đó có kết quả xét nghiệm dương tính là P(B|A).
Ta có
Vậy khả năng thực sự người đó nhiễn virus là 46,1%.
Gọi A là biến cố “Chị An trả lời đúng câu hỏi thứ nhất” và B là biến cố “Chị An trả lời đúng câu hỏi thứ hai”.
Hãy tìm các giá trị thích hợp điền vào các ô ? ở sơ đồ hình cây sau:
Lời giải:
A là biến cố “Chị An trả lời đúng câu hỏi thứ nhất” và B là biến cố “Chị An trả lời đúng câu hỏi thứ hai”.
Ta có P(A) = 0,7; P(B|A) = 0,9; .
Suy ra ;
Ta có sơ đồ hình cây
Lời giải:
Gọi A là biến cố “Tuyến phố H bị tắc đường” và B là biến cố “Buổi sáng đó có mưa”
Theo đề ta có: P(B) = 0,1; P(A|B) = 0,7;
Suy ra .
Áp dụng công thức xác suất toàn phần ta có:
= 0,1.0,7 + 0,9.0,2 = 0,25
Chọn ngẫu nhiên 1 bạn trong 100 học sinh trên.
a) Biết rằng bạn đó có tật khúc xạ, tính xác suất bạn đó là học sinh nam.
b) Biết rằng bạn đó là học sinh nam, tính xác suất bạn đó có tật khúc xạ.
Lời giải:
Gọi A là biến cố “Học sinh đó có tật khúc xạ” và B là biến cố “Học sinh đó là học sinh nam”.
a) Ta có .
b) Ta có .
Lời giải:
Gọi A là biến cố “Hệ thống radar phát cảnh báo” và B là biến cố “Vật thể bay đó là mục tiêu thật”.
Theo đề ta có P(A|B) = 0,9; ; .
Suy ra .
Ta có = 0,01.0,9 + 0,99.0,05 = 0,0585.
Ta cần tính .
Lời giải:
Gọi A là biến cố “Tài xế gây tai nạn” và B là biến cố “Tài xế sử dụng điện thoại di động khi lái xe”.
Theo đề ta có P(B) = 0,02; P(B|A) = 0,1.
Suy ra ; .
Cần tính .
Có
(đặt ).
Có
=>.
Ta có .
Vậy việc sử dụng điện thoại di động khi lái xe làm tăng xác suất gây tai nạn lên 5,44 lần.
BÀI TẬP
a) Tính xác suất để hai viên bi lấy ra từ hộp thứ hai là bi đỏ.
b) Biết rằng 2 viên bi lấy ra từ hộp thứ hai là bi đỏ, tính xác suất viên bi lấy ra từ hộp thứ nhất cũng là bi đỏ.
Lời giải:
a) Gọi A là biến cố “Lấy được 1 viên bi màu xanh ở hộp thứ nhất” và B là biến cố “Lấy được 2 viên bi màu đỏ ở hộp thứ hai”.
Khi đó ta có ; .
Suy ra ; .
Áp dụng công thức xác suất toàn phần:
.
b) Ta cần tính .
a) Tính xác suất học sinh được chọn có tham gia câu lạc bộ nghệ thuật.
b) Biết rằng học sinh được chọn có tham gia câu lạc bộ nghệ thuật. Tính xác suất học sinh đó là nam.
Lời giải:
Gọi A là biến cố “Học sinh được chọn là học sinh nữ” và B là biến cố “Học sinh được chọn tham gia câu lạc bộ nghệ thuật”.
Ta có P(A) = 0,52; P(B|A) = 0,18;
Suy ra .
a) = 0,52.0,18 + 0,48.0,15 = 0,1656.
b) Cần tính
a) Tính xác suất người được chọn mắc bệnh A.
b) Biết rằng người được chọn mắc bệnh A. Tính xác suất người đó chưa tiêm vắc xin phòng bệnh A.
Lời giải:
Gọi A là biến cố “Người được chọn đã tiêm vắc xin phòng bệnh A” và B là biến cố “Người được chọn mắc bệnh A”.
Ta có P(A) = 0,65; P(B|A) = 0,05;
Suy ra
a) = 0,65.0,05 + 0,35.0,17 = 0,092.
b) Cần tính
Ta có
a) Tính xác suất của các biến cố A và B.
b) Biết rằng chú lùn mà bạn Tuyết gặp tự nhận mình là người luôn nói thật. Tính xác suất để chú lùn đó luôn nói thật.
Lời giải:
A là biến cố “Chú lùn đó luôn nói thật” và B là biến cố “Chú lùn đó nhận mình là người luôn nói thật”.
a) Trong 7 chú lún có 4 chú lùn luôn nói thật nên . Suy ra .
Theo đề ta có P(B|A) = 1; .
Ta cần tính P(B).
Ta có .
b) Cần tính P(A|B).
Ta có .
Xem thêm các bài giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Bài 2. Công thức xác suất toàn phần và công thức Bayes
Bài 1. Tính giá trị gần dúng tích phân bằng máy tính cầm tay
Bài 2. Minh hoạ và tính tích phân bằng phần mềm GeoGebra
Bài 3. Sử dụng phần mềm GeoGebra dể biểu diễn hình học toạ độ trong không gian