Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 12 Bài 1: Phương trình mặt phẳng chi tiết sách Toán 12 Tập 2 Chân trời sáng tạo giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 12. Mời các bạn đón xem:
Giải bài tập Toán 12 Bài 1: Phương trình mặt phẳng
Lời giải:
Trong không gian Oxyz, để xác định một mặt phẳng ta cần biết được 1 điểm mà đường thẳng đó đi và một vectơ pháp tuyến của mặt phẳng đó.
b) Cho hai vectơ không cùng phương. Qua một điểm M0 cố định trong không gian, có bao nhiêu mặt phẳng (α) song song hoặc chứa giá của hai vectơ ?
Lời giải:
a) Qua một điểm M0 cố định trong không gian, có một mặt phẳng (α) vuông góc với giá của vectơ .
b) Qua một điểm M0 cố định trong không gian, có một mặt phẳng (α) song song hoặc chứa giá của hai vectơ .
a) Tìm tọa độ của một cặp vectơ chỉ phương của mặt phẳng (ABC).
b) Tìm tọa độ của một vectơ pháp tuyến của mặt phẳng (OAB).
Lời giải:
a) là cặp vectơ chỉ phương của mặt phẳng (ABC).
b) Ta có (OAB) (Oxy) mà Oz ⊥ (Oxy). Do đó là một vectơ pháp tuyến của mặt phẳng (OAB).
Lời giải:
+) là cặp vectơ chỉ phương của mặt phẳng (A'B'C').
+) Vì BB' ^ (A'B'C') nên là một vectơ pháp tuyến của mặt phẳng (A'B'C').
a) Vectơ có khác hay không?
b) Tính .
c) Vectơ có phải là vectơ pháp tuyến của mặt phẳng (α) không?
Lời giải:
a)
b) Ta có
c) Vì nên
Do đó là vectơ pháp tuyến của mặt phẳng (α).
Lời giải:
Ta có là cặp vectơ chỉ phương của mặt phẳng (Q).
Có =
Do đó mặt phẳng (Q) nhận làm một vectơ pháp tuyến.
Lời giải:
Ta có .
Vậy có giá song song với ngón cái.
Lời giải:
Ta có .
Có = 7x + 5y + 2z – 23.
a) Tìm một vectơ pháp tuyến của mỗi mặt phẳng (α), (β).
b) Tìm điểm thuộc mặt phẳng (α) trong số các điểm: M(1; 0; 1), N(1; 1; 0).
Lời giải:
a) Mặt phẳng (α) có một vectơ pháp tuyến là
Mặt phẳng (β) có một vectơ pháp tuyến là
b) Thay tọa độ điểm M vào phương trình (α) ta được: 2.1 + 2.0 – 3.1 – 4 = −5 ≠ 0.
Vậy M không thuộc mặt phẳng (α).
Thay tọa độ điểm N vào phương trình (α) ta được: 2.1 + 2.1 – 3.0 – 4 = 0.
Vậy N thuộc mặt phẳng (α).
a) Tìm tọa độ của .
b) Tính tích vô hướng của .
c) Lập phương trình tổng quát của mặt phẳng (α).
Lời giải:
a) Ta có .
b) .
c) Mặt phẳng (α) có phương trình tổng quát là:
a) Tìm tọa độ một vectơ pháp tuyến của mặt phẳng (α).
b) Lập phương trình của mặt phẳng (α)
Lời giải:
a) Có .
Mặt phẳng (α) nhận làm một vectơ pháp tuyến.
b) Mặt phẳng (α) đi qua M(0; 2; 1) và nhận làm một vectơ pháp tuyến có phương trình là: 3x + (y – 2) – 6(z – 1) = 0 ⇔ 3x + y – 6z + 4 = 0.
a) Tìm tọa độ một cặp vectơ chỉ phương của mặt phẳng (α).
b) Tìm tọa độ một vectơ pháp tuyến của mặt phẳng (α).
c) Lập phương trình của mặt phẳng (α).
Lời giải:
a) là một cặp vectơ chỉ phương của mặt phẳng (α).
b) Có .
Mặt phẳng (α) nhận làm một vectơ pháp tuyến.
c) Mặt phẳng (α) đi qua A(0; 1; 1) và nhận làm vectơ pháp tuyến có phương trình là: −4x + 10(y – 1) – 11(z – 1) = 0 ⇔ −4x + 10y – 11z + 1 = 0.
Thực hành 4 trang 38 Toán 12 Tập 2: Viết phương trình mặt phẳng (P) trong mỗi trường hợp sau:
a) (P) đi qua điểm A(2; 0; −1) và có vectơ pháp tuyến .
b) (P) đi qua điểm B(−2; 3; 0) và có cặp vectơ chỉ phương là , .
c) (P) đi qua ba điểm A(2; 1; 5), B(3; 2; 7), C(4; 1; 6).
d) (P) đi qua ba điểm M(7; 0; 0), N(0; −2; 0), P(0; 0; 9).
Lời giải:
a) (P) đi qua điểm A(2; 0; −1) và có vectơ pháp tuyến có phương trình là: 5(x – 2) – 2y + 7(z + 1) = 0 hay 5x – 2y + 7z – 3 = 0.
b) Có
(P) đi qua điểm B(−2; 3; 0) và nhận làm vectơ pháp tuyến có phương trình là: (x + 2) – 3(y – 3) – 4z = 0 ⇔ x – 3y – 4z + 11 = 0.
c) Ta có .
Có .
Mặt phẳng (P) đi qua ba điểm A(2; 1; 5) và nhận làm vectơ pháp tuyến có phương trình là (x – 2) + 3(y – 1) – 2(z – 5) = 0 ⇔ x + 3y – 2z + 5 = 0.
d) Phương trình mặt phẳng (P) đi qua ba điểm M(7; 0; 0), N(0; −2; 0), P(0; 0; 9) có phương trình theo đoạn chắn là: ⇔ −18x + 63y – 14z + 126 = 0.
Lời giải:
+) Phương trình mặt phẳng (O'AB) đi qua A(2; 0; 0), B(0; 3; 0), O'(0; 0; 5) có phương trình theo đoạn chắn là ⇔15x + 10y + 6z – 30 = 0.
+) Ta có A'(2; 0; 5), B'(0; 3; 5).
Có , .
Mặt phẳng (O'A'B') đi qua O'(0; 0; 5) và nhận làm một vectơ pháp tuyến có phương trình là: z – 5 = 0.
a) Nêu nhận xét về các vectơ pháp tuyến của hai mặt phẳng trên.
b) Cho điểm M(−1; 0; 0). Hãy cho biết các mặt phẳng (α), (β) có đi qua M không.
c) Giải thích tại sao (α) song song với (β).
Lời giải:
a) Ta có .
Hai vectơ pháp tuyến cùng phương với nhau.
b) Thay tọa độ điểm M vào phương trình (α) ta được: −1 + 1 = 0.
Vậy điểm M ∈ (α).
Thay tọa độ điểm M vào vào phương trình (β) ta được 2.(−1) + 1 = −1 ≠ 0.
Vậy điểm M ∉ (β).
c) Vì và M ∈ (α), M ∉ (β) nên (α) song song với (β).
a) (F): 8x – 4y + 32z + 7 = 0;
b) (H): 6x – 3y + 24z + 3 = 0;
c) (G): 10x – 5y + 41z + 1 = 0.
Lời giải:
Mặt phẳng (E) có một vectơ pháp tuyến là
a) Mặt phẳng (F) có một vectơ pháp tuyến là và 7 ≠ 4.1. Do đó (E) // (F).
b) Mặt phẳng (H) có một vectơ pháp tuyến là và 3 = 3.1. Do đó (E) ≡ (F).
c) Mặt phẳng (G) có một vectơ pháp tuyến là
Do và không cùng phương nên hai mặt phẳng (E) và (G) không song song với nhau.
Lời giải:
Mặt phẳng (P) có một vectơ pháp tuyến là
Vì (P) // (Q) nên mặt phẳng (Q) nhận làm một vectơ pháp tuyến.
Mặt phẳng (Q) đi qua điểm M(1; 1; 1) và nhận làm một vectơ pháp tuyến có phương trình là 6(x – 1) + 5(y – 1) + (z – 1) = 0 ⇔ 6x + 5y + z – 12 = 0.
a) Chỉ ra hai vectơ lần lượt là vectơ pháp tuyến của (α) và (β).
b) Tính tích vô hướng và nêu nhận xét về hai mặt phẳng (α) và (β).
Lời giải:
a) Có .
b) .
Do đó (α) ⊥ (β).
Thực hành 6 trang 40 Toán 12 Tập 2: Tìm các cặp mặt phẳng vuông góc trong các mặt phẳng sau:
(F): 3x + 2y + 5z + 3 = 0; (H): x – 4y + z + 23 = 0; (G): x – y + 3z + 24 = 0.
Lời giải:
Có .
Có . Do đó (F) ^ (H).
Lời giải:
Giả sử quả bóng rơi tại vị trí A, B là vị trí bạn nam đứng.
Xét DOAB vuông tại B, có .
Vì A ∈ (Oxy) nên A(3; 4; 0). Suy ra
Mặt phẳng mặt đất Oxy có một vectơ pháp tuyến là
Có .
Khi đó mặt phẳng (P) đi qua O(0; 0; 0) và có vectơ pháp tuyến có phương trình là 4x – 3y = 0.
a) Nêu nhận xét về phương của hai vectơ và .
b) Tính theo A, B, C, D và tọa độ của M0.
c) Giải thích tại sao ta lại có đẳng thức
d) Từ các kết quả trên suy ra cách tính
Lời giải:
a) Vì M1(x1; y1; z1) là hình chiếu vuông góc của M0 trên (α) nên M1M0 ^ (α).
Do đó hai vectơ và cùng phương với nhau.
b)
= Ax0 + By0 + Cz0 – Ax1 – By1 – Cz1.
Vì M1(x1; y1; z1) Î (α) nên ta có Ax1 + By1 + Cz1 + D = 0 ⇔ D = – Ax1 – By1 – Cz1.
Do đó = Ax0 + By0 + Cz0 + D.
c) Ta có .
Mà do hai vectơ và cùng phương với nhau nên hoặc .
+) Nếu thì .
+) Nếu thì
Do đó .
d) Vì nên
b) Tính khoảng cách giữa hai mặt phẳng song song (R): 8x + 6y + 70 = 0 và (S): 16x + 12y – 2 = 0.
Lời giải:
Mặt phẳng (MNP) đi qua M(2; 1; 2), N(3; 3; 3), P(4; 5; 6) nên có cặp vectơ chỉ phương
Do đó mặt phẳng (MNP) có một vectơ pháp tuyến là
Mặt phẳng (MNP) đi qua M(2; 1; 2) và nhận làm một vectơ pháp tuyến có phương trình là 2(x – 2) – (y – 1) = 0 ⇔ 2x – y – 3 = 0.
Chiều cao của hình chóp chính là khoảng cách từ O đến mặt phẳng (MNP).
Ta có .
b) Lấy điểm A(1; −13; 0) ∈ (R).
Vì (R) // (S) nên .
Lời giải:
Vì ABCD là hình vuông cạnh và O là tâm của hình vuông nên ta có:
OA=OB=OC=OD=a.
Khi đó ta có O(0; 0; 0), A(−a; 0; 0), B(0; a; 0), S(0; 0; 2a), C(a; 0; 0).
Mặt phẳng (SAB) đi qua A(−a; 0; 0), B(0; a; 0), S(0; 0; 2a) có phương trình theo đoạn chắn là:
hay −2x + 2y + z = 2a hay −2x + 2y + z – 2a = 0.
Ta có .
Vậy
BÀI TẬP
Bài 1 trang 42 Toán 12 Tập 2: Viết phương trình của mặt phẳng:
a) Đi qua điểm A(2; 0; 0) và nhận làm vectơ pháp tuyến;
b) Đi qua điểm B(1; 2; 3) và song song với giá của mỗi vectơ và ;
c) Đi qua ba điểm A(1; 0; 0), B(0; 2; 0) và C(0; 0; 4).
Lời giải:
a) Mặt phẳng qua điểm A(2; 0; 0) và nhận làm vectơ pháp tuyến có phương trình là: 2(x – 2) + y – z = 0 ⇔ 2x + y – z – 4 = 0.
b) Một vectơ pháp tuyến của mặt phẳng là
.
Mặt phẳng đi qua điểm B(1; 2; 3) nhận làm một vectơ pháp tuyến có phương trình là: 2(x – 1) – 7(y – 2) + 4(z – 3) = 0 ⇔ 2x – 7y + 4z = 0.
c) Mặt phẳng đi qua ba điểm A(1; 0; 0), B(0; 2; 0) và C(0; 0; 4) có phương trình theo đoạn chắn là: ⇔ 4x + 2y + z – 4 = 0.
Bài 2 trang 42 Toán 12 Tập 2: a) Lập phương trình của các mặt phẳng tọa độ (Oxy), (Oyz), (Oxz).
b) Lập phương trình của các mặt phẳng đi qua điểm A(−1; 9; 8) và lần lượt song song với các mặt phẳng tọa độ trên.
Lời giải:
a) Mặt phẳng (Oxy) nhận làm vectơ pháp tuyến có phương trình là z = 0.
Mặt phẳng (Oyz) nhận làm vectơ pháp tuyến có phương trình là x = 0.
Mặt phẳng (Oxz) nhận làm vectơ pháp tuyến có phương trình là y = 0.
b) Mặt phẳng đi qua điểm A(−1; 9; 8) và song song với mặt phẳng (Oxy) nhận làm vectơ pháp tuyến có phương trình là z – 8 = 0.
Mặt phẳng đi qua điểm A(−1; 9; 8) và song song với mặt phẳng (Oyz) nhận làm vectơ pháp tuyến có phương trình là x + 1 = 0.
Mặt phẳng đi qua điểm A(−1; 9; 8) và song song với mặt phẳng (Oxz) nhận làm vectơ pháp tuyến có phương trình là y – 9 = 0.
a) Hãy viết phương trình của các mặt phẳng (ABC) và (ABD).
b) Hãy viết phương trình mặt phẳng (P) đi qua cạnh BC và song song với cạnh AD.
Lời giải:
Ta có , .
a) Mặt phẳng (ABC) có là cặp vectơ chỉ phương.
Do đó mặt phẳng (ABC) nhận
.
Mặt phẳng (ABC) đi qua điểm A(4; 0; 2) và làm một vectơ pháp tuyến có phương trình là (x – 4) + y + (z – 2) = 0 ⇔ x + y + z – 6 = 0.
Mặt phẳng (ABD) nhận , làm cặp vectơ chỉ phương.
Do đó mặt phẳng (ABD) nhận
.
Mặt phẳng (ABD) đi qua điểm A(4; 0; 2) và làm một vectơ pháp tuyến có phương trình là 14(x – 4) + 13y + 9(z – 2) = 0 ⇔ 14x + 13y + 9z – 74 = 0.
b) Mặt phẳng (P) đi qua cạnh BC và song song với cạnh AD nhận , làm cặp vectơ chỉ phương.
Do đó mặt phẳng (P) nhận
.
Mặt phẳng (P) đi qua điểm B(0; 5; 1) và nhận làm một vectơ pháp tuyến có phương trình là 8x + 7(y – 5) + 5(z – 1) = 0 ⇔ 8x + 7y + 5z – 40 = 0.
Lời giải:
Có .
Vì (Q) // (P) nên mặt phẳng (Q) nhận làm một vectơ pháp tuyến.
Mặt phẳng (Q) đi qua điểm C(1; −5; 0) và có một vectơ pháp tuyến có phương trình là 3(x – 1) – 5(y + 5) + 4z = 0 ⇔ 3x – 5y + 4z – 28 = 0.
Lời giải:
Ta có , .
Mặt phẳng (α) nhận , làm cặp vectơ chỉ phương.
Do đó mặt phẳng (α) có một vectơ pháp tuyến là
Mặt phẳng (α) đi qua điểm A(1; 0; 1) và nhận làm một vectơ pháp tuyến có phương trình là x – 1 – 2(z – 1) = 0 ⇔ x – 2z + 1 = 0.
Lời giải:
Ta có .
Có .
Mặt phẳng (R) đi qua điểm A(1; 2; −1) và nhận làm một vectơ pháp tuyến có phương trình là:
−4(x – 1) + (y – 2) + 3(z + 1) = 0 ⇔ 4x – y – 3z – 5 = 0.
Lời giải:
+)
+)
Lời giải:
Lấy A(2; 0; 0) ∈ (P).
Ta có
Lời giải:
Ta có A ≡ O(0; 0; 0), B(2a; 0; 0), S(0; 0; 3a), C(2a; 5a; 0).
Suy ra .
Có .
Mặt phẳng (SBC) đi qua điểm S(0; 0; 3a) và nhận làm một vectơ pháp tuyến có phương trình là: 3x + 2(z – 3a) = 0 ⇔ 3x + 2z – 6a = 0.
.
Lời giải:
Có .
Có và 11 ≠ 2.2. Do đó (P) // (Q).
Có . Do đó (P) ⊥ (R).
Có . Do đó (Q) ⊥ (R).
Xem thêm các bài giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Bài 2. Phương trình đường thẳng trong không gian