Một nhà sản xuất trung bình bán được 1 000 ti vi màn hình phẳng mỗi tuần với giá 14 triệu đồng

6.4 K

Với giải Vận dụng trang 40 Toán 12 Tập 1 Kết nối tri thức chi tiết trong Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn

Vận dụng trang 40 Toán 12 Tập 1Một nhà sản xuất trung bình bán được 1 000 ti vi màn hình phẳng mỗi tuần với giá 14 triệu đồng một chiếc. Một cuộc khảo sát thị trường chỉ ra rằng nếu cứ giảm giá bán 500 nghìn đồng, số lượng ti vi bán ra sẽ tăng thêm khoảng 100 ti vi mỗi tuần.

a) Tìm hàm cầu.

b) Công ty nên giảm giá bao nhiêu cho người mua để doanh thu là lớn nhất?

c) Nếu hàm chi phí hằng tuần là C(x)=120003x (triệu đồng), trong đó x là số ti vi bán ra trong tuần, nhà sản xuất nên đặt giá bán như thế nào để lợi nhuận là lớn nhất?

Lời giải:

a) Gọi p (triệu đồng) là giá của mỗi ti vi, x là số ti vi. Khi đó, hàm cầu là p=p(x).

Theo giả thiết, tốc độ thay đổi của x tỉ lệ với tốc độ thay đổi của p nên hàm số p=p(x) là hàm số bậc nhất nên. Do đó, p(x)=ax+b (a khác 0).

Giá tiền p1=14 ứng với x1=1000, giá tiền p2=13,5 ứng với x2=1000+100=1100

Do đó, phương trình đường thẳng p(x)=ax+b đi qua hai điểm (1000; 14) và (1 100; 13,5). Ta có hệ phương trình: {14=1000a+b13,5=1100a+b{a=1200b=19 (thỏa mãn)

Vậy hàm cầu là: p(x)=1200x+19

b) Vì p=1200x+19x=200p+3800

Hàm doanh thu từ tiền bán ti vi là: R(p)=px=p(200p+3800)=200p2+3800p

Để doanh thu là lớn nhất thì ta cần tìm p sao cho R đạt giá trị lớn nhất.

Ta có: R(p)=400p+3800,R(p)=0p=192

Bảng biến thiên:

Tài liệu VietJack

Vậy công ty nên giảm giá số tiền một chiếc ti vi là: 14192=4,5 (triệu đồng) thì doanh thu là lớn nhất.

c) Doanh thu bán hàng của x sản phẩm là: R(x)=x.p(x)=x.(1200x+19)=x2200+19x (triệu đồng)

Do đó, hàm số thể hiện lợi nhuận thu được khi bán x sản phẩm là:

P(x)=R(x)C(x)=x2200+19x12000+3x=x2200+22x12000(triệu đồng).

Để lợi nhuận là lớn nhất thì P(x) là lớn nhất.

Ta có: P(x)=x100+22,P(x)=0x=2200

Bảng biến thiên:

Tài liệu VietJack

Vậy có 2200 ti vi được bán ra thì lợi nhuận là cao nhất. Số ti vi mua tăng lên là: 22001000=1200 (chiếc)

Vậy cửa hàng nên đặt giá bán là: 140,5.1200100=8 (triệu đồng)

Đánh giá

0

0 đánh giá