Cho đường thẳng a và đường tròn (O; R) thỏa mãn đường thẳng a đi qua điểm H

94

Với giải Hoạt động 2 trang 107 Toán 9 Tập 1 Cánh diều chi tiết trong Bài 3: Tiếp tuyến của đường tròn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 3: Tiếp tuyến của đường tròn

Hoạt động 2 trang 107 Toán 9 Tập 1: Cho đường thẳng a và đường tròn (O; R) thỏa mãn đường thẳng a đi qua điểm H thuộc đường tròn (O; R) và a ⊥ OH (Hình 35).

Hoạt động 2 trang 107 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a) So sánh khoảng cách từ điểm O đến đường thẳng a và bán kính R.

b) Giả sử N là điểm thuộc đường thẳng a và N khác H. So sánh ON và R. Điểm N có thuộc đường tròn (O; R) hay không?

c) Đường thẳng a có phải là tiếp tuyến của đường tròn (O; R) hay không?

Lời giải:

a) Vì OH ⊥ a tại H nên khoảng cách từ điểm O đến đường thẳng a là OH = R.

b) Ta có ON, OH lần lượt là đường xiên và đường vuông góc kẻ từ O đến đường thẳng a nên ON > OH hay ON > R.

Do đó điểm N nằm ngoài đường tròn (O; R).

c) Ta có a vuông góc với bán kính OH tại điểm H nên a là tiếp tuyến của đường tròn (O; R) tại tiếp điểm H.

Lý thuyếtbNhận biết tiếp tuyến của đường tròn

Nhận xét: Nếu một đường thẳng là tiếp tuyến của một đường tròn thì đường thẳng đó vuông góc với bán kính đi qua tiếp điểm.

Dấu hiệu nhận biết tiếp tuyến

Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là tiếp tuyến của đường tròn.

Lý thuyết Tiếp tuyến của đường tròn (Cánh diều 2024) | Lý thuyết Toán 9 (ảnh 1)

Đánh giá

0

0 đánh giá