Giải SGK Toán 10 Bài 3 (Chân trời sáng tạo): Giải tam giác và ứng dụng thực tế

5.7 K

Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 10 Bài 3: Giải tam giác và ứng dụng thực tế chi tiết sách Toán 10 Tập 1 Chân trời sáng tạo giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài 3: Giải tam giác và ứng dụng thực tế

Video bài giảng Giải tam giác và ứng dụng thực tế - Chân trời sáng tạo

Giải toán lớp 10 trang 74 Tập 1 Chân trời sáng tạo

HĐ Khởi động trang 74 Toán lớp 10: Với số liệu đo được từ một bên bờ sông như hình vẽ bên, bạn hãy giúp nhân viên đo đạc tính khoảng cách giữa hai cái cây bên kia bờ sông.

Phương pháp giải:

Áp dụng định lí cosin: a2=b2+c22bccosA

Lời giải:

Kí hiệu 3 điểm A, B, C như hình dưới.

 

Áp dụng định lí cosin trong tam giác ABC, ta có:

a2=b2+c22bccosA

Mà b=AC=100,c=AB=75,A^=32o

a2=1002+7522.100.75.cos32o2904,28BC=a54

Vậy khoảng cách giữa hai cây bên bờ sông là 54m.

1.  Giải tam giác

Giải toán lớp 10 trang 75 Tập 1 Chân trời sáng tạo

Thực hành trang 75 Toán lớp 10: Giải tam giác ABC trong các trường hợp sau:

a) a=17,4;B^=44o30;C^=64o.

b) a=10;b=6;c=8.

Phương pháp giải:

a) Áp dụng định lí sin: asinA=bsinB=csinC=2R

b) Áp dụng hệ quả của định lí cosin: cosA=b2+c2a22bc;cosB=a2+c2b22ac;cosC=a2+b2c22ab

Lời giải:

a) Ta cần tính góc A^ và hai cạnh b,c.

Ta có: A^=180oB^C^=180o44o3064o=71o30.

Áp dụng định lí sin, ta có:

asinA=bsinB=csinC17,4sin71o30=bsin44o30=csin64o{b=sin44o30.17,4sin71o3012,86c=sin64o.17,4sin71o3016,5

b) Ta cần tính số đo ba góc A^,B^,C^

Áp dụng hệ quả của định lí cosin, ta có:

 cosA=b2+c2a22bc;cosB=a2+c2b22accosA=62+821022.6.8=0;cosB=102+82622.10.8=45A^=90o,B^=36o5211,63C^=53o748,37

2. Áp dụng giải tam giác vào thực tế

Giải toán lớp 10 trang 76 Tập 1 Chân trời sáng tạo

Vận dụng 1 trang 76 Toán lớp 10: Hai máy bay cùng cất cánh từ một sân bay nhưng bay theo hai hướng khác nhau. Một chiếc di chuyển với tốc độ 450 km/h theo hướng tây và chiếc còn lại di chuyển theo hướng lệch so với hướng bắc 25o về phía tây với tốc độ 630 km/h (Hình 5). Sau 90 phút, hai máy bay cách nhau bao nhiêu kilomet? Giả sử chúng đang ở cùng độ cao.

 

 

Phương pháp giải:

Bước 1. Tính góc BOA^=90o25o.

Bước 2: Áp dụng định lí cosin: AB2=OA2+OB22OA.OBcosO

Lời giải:

Ta có: BOA^=90o25o=75o.

Sau 90 phút = 1,5 giờ:

Máy bay thứ nhất đi được quãng đường (OA) là: 450.1,5=675(km)

Máy bay thứ hai đi được quãng đường (OB) là: 630.1,5=945(km)

Áp dụng định lí cosin trong tam giác OAB, ta có:

AB2=OA2+OB22OA.OBcosOAB2=6752+94522.675.945cos75oAB1009,2

Vậy sau 90 phút, hai máy bay cách nhau khoảng 1009,2 km.

Giải toán lớp 10 trang 77 Tập 1 Chân trời sáng tạo

Vận dụng 2 trang 77 Toán lớp 10: Trên bản đồ địa lí, người ta thường gọi tứ giác với bốn đỉnh lần lượt là các thành phố Hà Tiên, Châu Đốc, Long Xuyên, Rạch Giá là tứ giác Long Xuyên. Dựa theo các khoảng cách đã cho trên Hình 6, tính khoảng cách giữa Châu Đốc và Rạch Giá.

Phương pháp giải:

Bước 1: Áp dụng hệ quả của định lí cosin để tính các góc CHL^,LHR^cosCHL^=CH2+HL2CL22.CH.HL;cosLHR^=HL2+HR2RL22.HL.HR

Bước 2: Áp dụng định lí cosin CR2=HC2+HR22.HC.HRcosCHR^

Lời giải:

Bước 1: Áp dụng hệ quả của định lí cosin trong tam giác HCL, ta có:cosCHL^=CH2+HL2CL22.CH.HL=782+10424922.78.104=48335408CHL^26o3940,05

Áp dụng hệ quả của định lí cosin trong tam giác HLR, ta có:cosLHR^=HL2+HR2LR22.HL.HR=1042+7725622.104.77=1360916016LHR^31o4910,4CHR^58o2850,45

Bước 2: Áp dụng định lí cosin CR2=HC2+HR22.HC.HRcosCHR^

CR2=782+7722.78.77cos58o2850,45CR75,72

Vậy khoảng cách giữa Châu Đốc và Rạch Giá là 75, 72 km.

Bài tập

Bài 1 trang 77 Toán lớp 10: Giải tam giác ABC trong các trường hợp sau:

a) AB=14,AC=23,A^=125o.

b) BC=22,4;B^=64o;C^=38o.

c) AC=22,B^=120o,C^=28o.

d) AB=23,AC=32,BC=44

Lời giải:

a) AB=14,AC=23,A^=125o.

Ta cần tính cạnh BC và hai góc B^,C^.

Áp dụng định lí cosin, ta có:

BC2=AB2+AC22.AB.AC.cosABC2=142+2322.14.23.cos125oBC33

Áp dụng định lí sin, ta có:

BCsinA=ACsinB=ABsinC33sin125o=23sinB=14sinCsinB=23.sin125o330,57B^35oC^20o

b) BC=22,4;B^=64o;C^=38o.

Ta cần tính góc A và hai cạnh AB, AC.

Ta có: A^=180oB^C^=180o64o38o=78o

Áp dụng định lí sin, ta có:

BCsinA=ACsinB=ABsinC22sin78o=ACsin64o=ABsin38o{AC=sin64o.22sin78o20,22AB=sin38o.22sin78o13,85

c) AC=22,B^=120o,C^=28o.

Ta cần tính góc A và hai cạnh AB, BC.

Ta có: A^=180oB^C^=180o120o28o=32o

Áp dụng định lí sin, ta có:

BCsinA=ACsinB=ABsinCBCsin32o=22sin120o=ABsin28o{BC=sin32o.22sin120o13,5AB=sin28o.22sin120o12

d) AB=23,AC=32,BC=44

Ta cần tính số đo ba góc A^,B^,C^

Áp dụng hệ quả của định lí cosin, ta có:

 cosA=AC2+AB2BC22.AB.AC;cosB=BC2+AB2AC22.BC.BAcosA=322+2324422.32.23=3831472;cosB=442+2323222.44.23=131184A^105o,B^=44o36C^=30o24

Bài 2 trang 77 Toán lớp 10: Để lắp đường dây điện cao thế từ vị trí A đến vị trí B, do phải tránh một ngọn núi nên người ta phải nối đường dây từ vị trí A đến vị trí C dài 10 km, sau đó nối đường dây từ vị trí C đến vị trí B dài 8 km. Góc tạo bởi hai đoạn dây AC và CB là 70°. Tính chiều dài tăng thêm vì không thể nối trực tiếp từ A đến B.

Để lắp đường dây điện cao thế từ vị trí A đến vị trí B, do phải tránh một ngọn núi

Phương pháp giải:

Bước 1: Tính cạnh AB: Áp dụng định lí cosin: AB2=BC2+AC22.BC.AC.cosC

Bước 2: Tính chiều dài tăng thêm, bằng AC+CBAB

Lời giải:

Áp dụng định lí cosin, ta có:

AB2=BC2+AC22.BC.AC.cosCAB2=82+1022.8.10.cos70oAB10,45

Vậy chiều dài tăng thêm vì không thể nối trực tiếp là:

AC+CBAB=10+810,45=7,55(km).

Bài 3 trang 77 Toán lớp 10: Một người đứng cách thân một cái quạt gió 16 m và nhìn thấy tâm của cánh quạt với góc nâng 56,5° (Hình 8). Tính khoảng cách từ tâm của cánh quạt đến mặt đất. Cho biết khoảng cách từ mắt của người đó đến mặt đất là 1,5 m.

Một người đứng cách thân một cái quạt gió 16 m và nhìn thấy tâm của cánh quạt với góc nâng 56,5 độ

Phương pháp giải:

Kí hiệu các điểm A, B, C như hình dưới.

 

Cách 1:

Tính góc B rồi áp dụng định lí sin để tính BC: BCsinA=ACsinB

Cách 2:

tanA=BCACBC=AC.tanA

Lời giải:

Kí hiệu các điểm A, B, C như hình dưới.

 

Cách 1:

Ta có: B^=90o56,5o=33,5o

Áp dụng định lí sin, ta có: BCsinA=ACsinB

BC=sinA.ACsinB=sin56,5o.16sin33,5o24,2(m)

Vậy khoảng cách từ tâm của cánh quạt đến mặt đất là 24,2+1,5=15,7(m)

Cách 2:

tanA=BCACBC=AC.tanA=16.tan56,5o24,2

Vậy khoảng cách từ tâm của cánh quạt đến mặt đất là 24,2+1,5=15,7(m)

Giải toán lớp 10 trang 78 Tập 1 Chân trời sáng tạo

Bài 4 trang 78 Toán lớp 10: Tính chiều cao AB của một ngọn núi. Biết tại hai điểm C, D cách nhau 1 km trên mặt đất (B, C, D thẳng hàng), người ta nhìn thấy đỉnh A của núi với góc nâng lần lượt là 32° và 40° (Hình 9).

Tính chiều cao AB của một ngọn núi. Biết tại hai điểm C, D cách nhau 1 km trên mặt đất

Phương pháp giải:

Bước 1: Tính AB theo tan góc đối bằng 2 cách (đưa vào hai tam giác ABC và ADB)

Bước 2: Giải phương trình ẩn x, từ đó suy ra AB.

Lời giải:

Tam giác ABC vuông tại B nên ta có: tanC=ABCBAB=tan32.(1+x)

Tam giác ADB vuông tại B nên ta có: tanD=ABDBAB=tan40.x

tan32.(1+x)=tan40.xx.(tan40tan32)=tan32x=tan32tan40tan32x2,9(km)

ABtan40.2,922,45(km)

Vậy chiều cao của ngọn núi là 2,45 km.

Bài 5 trang 78 Toán lớp 10: Hai người quan sát khinh khí cầu tại hai địa điểm P và Q nằm ở sườn đồi nghiêng 32° so với phương ngang, cách nhau 60 m (Hình 10). Người quan sát tại P xác định góc nâng của khinh khí cầu là 62°. Cùng lúc đó, người quan sát tại Q xác định góc nâng của khinh khí cầu đó là 70°. Tính khoảng cách từ Q đến khinh khí cầu.

Hai người quan sát khinh khí cầu tại hai địa điểm P và Q nằm ở sườn đồi nghiêng 32 độ

Phương pháp giải:

Kí hiệu điểm A là vị trí khinh khí cầu.

Bước 1: Tính góc P, Q, A trong tam giác APQ.

Bước 2: Áp dụng định lí sin, tính QA

Lời giải:

Gọi A là vị trí của khinh khí cầu, Pt là đường sườn đồi như hình.

Ta có:

Tại P, góc nâng của khinh khí cầu là 62P^=6232=30

Tại Q, góc nâng của khinh khí cầu là 70AQt^=7032=38

AQP^=18038=142 và A^=18014230=8

Áp dụng định lí sin trong tam giác APQ, ta có:

PQsinA=QAsinPQA=sinP.PQsinA=sin30.60sin8215,56(m)

Vậy khoảng cách từ Q đến khinh khí cầu là 215,56 m.

Bài 6 trang 78 Toán lớp 10: Một người đứng ở trên một tháp truyền hình cao 352 m so với mặt đất, muốn xác định khoảng cách giữa hai cột mốc trên mặt đất bên dưới. Người đó quan sát thấy góc được tạo bởi hai đường ngắm tới hai mốc này là 43°, góc giữa phương thẳng đứng và đường ngắm tới một điểm mốc trên mặt đất là 62° và điểm mốc khác là 54° (Hình 11). Tính khoảng cách giữa hai cột mốc này.

Một người đứng ở trên một tháp truyền hình cao 352 m so với mặt đất

Phương pháp giải:

Bước 1: Kí hiệu các điểm A, B, C, H như hình trên.

Bước 2: Tính AB, AC bằng cách gắn vào tam giác ABH và ACH.

Bước 3: Áp dụng định lí cosin cho tam giác ABC: BC2=AB2+AC22.AB.AC.cosA

Lời giải:

Gọi các điểm A, B, C, H như hình trên.

Xét tam giác ABH ta có:

AH=352,BAH^=62

Mà cosBAH^=AHABAB=352.cos62165,25

Tương tự, ta có: cosCAH^=AHACAC=352.cos54206,9

Áp dụng định lí cosin cho tam giác ABC, ta có:

BC2=AB2+AC22.AB.AC.cosABC2=165,252+206,922.165,25.206,9.cos43BC141,8

Vậy khoảng cách giữa hai cột mốc này là 141,8 m.

Lý thuyết Giải tam giác và ứng dụng thực tế

1. Giải tam giác

Giải tam giác là tìm số đo các cạnh và các góc còn lại của tam giác khi ta biết được các yếu tố đủ để xác định tam giác đó.

Để giải tam giác, ta thường sử dụng một cách hợp lí các hệ thức lượng như: định lí sin, định lí côsin và các công thức tính diện tích tam giác.

Ví dụ 1. Giải tam giác ABC biết AB = 45, AC = 32 và A^=60°. 

Hướng dẫn giải

+) Theo định lí côsin ta có:

BC2 = AB2 + AC2 – 2.AB.AC.cosA = 452 + 322 – 2.45.32.cos60°

Þ BC2 = 1609.

Þ BC ≈ 40,11.

+) Theo định lí sin ta có:BCsinA=ACsinB

40,11sin60°=32sinB 

sinB=32.sin60°40,110,69 

B^ 44° (không thể xảy ra trường hợp B^136° do A^+B^>180°)

Xét tam giác ABC có A^=60°,B^=44° ta có:

A^+B^+C^=180° (định lí tổng ba góc trong tam giác)

C^=180°A^B^ 

C^=180°60°44°=76°

Vậy BC ≈ 40,11; B^44° và C^76°. 

2. Áp dụng giải tam giác vào thực tế

Vận dụng giải tam giác giúp ta giải quyết rất nhiều bài toán trong thực tế, đặc biệt là trong thiết kế và xây dựng.

Ví dụ 2. Một khung thành bóng đá rộng 5 mét. Một cầu thủ đứng ở vị trí cách cột dọc khung thành 26 mét và cách cột còn lại 23 mét, sút vào khung thành. Tính góc nhìn của cầu thủ tới hai cột khung thành trên.

Hướng dẫn giải

Vị trí cầu thủ C và khung thành AB được mô tả như hình vẽ dưới đây:

Gọi α là góc nhìn của cầu thủ C tới hai cột khung thành A và B, tức là α=ACB^. 

Áp dụng hệ quả định lí côsin trong tam giác ABC ta có:

cosα=AC2+BC2AB22.AC.BC=232+262522.23.260,9866 

Suy ra α ≈ 9°23'.

Vậy góc nhìn của cầu thủ tới hai cột khung thành là khoảng 9°23'.

Ví dụ 3. Từ hai vị trí A và B của một toà nhà, người ta quan sát đỉnh C của một ngọn núi. Biết rằng độ cao AB = 70 m, phương nhìn AC tạo với phương nằm ngang góc 30°, phương nhìn BC tạo với phương nằm ngang góc 15°30'. Tính độ cao của ngọn núi.

Hướng dẫn giải

Ta có BAC^=BAH^CAH^BAC^=90°30°=60°.

ABC^=90°+15°30'=105°30' 

Xét tam giác ABC ta có:

BAC^+ABC^+ACB^=180° (định lí tổng ba góc trong tam giác)

ACB^=180°BAC^ABC^ 

ACB^180°60°105°30'=14°30'

Áp dụng định lí sin ta có: ACsinABC^=ABsinACB^ 

ACsin105°30'=70sin14°30' 

AC=70.sin105°30'sin14°30' 

Þ AC ≈ 269,4 (m)

Tam giác ACH vuông tại H ta có: CH=AC.sinCAH^269,4.sin30°134,7m 

Vậy ngọn núi cao khoảng 134,7 m.

Xem thêm các bài giải SGK Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 2: Định lí cosin và định lí sin

Bài tập cuối chương 4

Bài 1: Khái niệm vecto

Bài 2: Tổng và hiệu của hai vecto

Đánh giá

0

0 đánh giá