Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 11 Bài 3: Hàm số liên tục chi tiết sách Toán 11 Tập 1 Chân trời sáng tạo giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 11. Mời các bạn đón xem:
Giải bài tập Toán lớp 11 Bài 3: Hàm số liên tục
Lời giải:
+) Bãi xe A:
Dựa vào đồ thị hàm số ta thấy, theo thời gian gửi x (giờ) tăng thì phí gửi xe tăng dần.
+) Bãi xe B:
Dựa vào đồ thị hàm số ta thấy, theo thời gian gửi x (giờ) tăng thì phí gửi xe tăng dần theo nấc.
1. Hàm số liên tục tại một điểm
Hoạt động khám phá 1 trang 80 Toán 11 Tập 1: Cho hàm số có đồ thị như Hình 1.
Tại mỗi điểm x0 = 1 và x0 = 2, có tồn tại giới hạn không? Nếu có, giới hạn đó có bằng f(x0) không?
Lời giải:
+) Tại x0 = 1 ta có:
Dãy (xn) bất kì thỏa mãn xn < 1 và xn → 1 thì f(xn) = 1 khi đó .
Dãy (xn) bất kì thỏa mãn 1 < xn ≤ 2 và xn → 1 thì f(xn) = 1 + xn khi đó .
Suy ra . Do đó không tồn tại .
+) Tại x0 = 2
Dãy (xn) bất kì thỏa mãn xn < 2 và xn → 2 thì f(xn) = 1 + xn khi đó .
Dãy (xn) bất kì thỏa mãn 2 < xn ≤ 3 và xn → 2 thì f(xn) = 5 – xn khi đó .
Suy ra . Do đó .
Ta có f(2) = 1 + 2 = 3.
Vì vậy .
Thực hành 1 trang 81 Toán 11 Tập 1: Xét tính liên tục của hàm số:
a) f(x) = 1 – x2 tại điểm x0 = 3;
b) tại điểm x0 = 1.
Lời giải:
a) Ta có: và f(3) = 1 – 32 = – 8.
Do đó
Vì vậy hàm số liên tục tại x = 3.
b) Tại x0 = 1:
và .
Suy ra
Do đó không tồn tại .
Vậy hàm số đã cho không liên tục tại x0 = 1.
2. Hàm số liên tục trên một khoảng, trên một đoạn
Hoạt động khám phá 2 trang 81 Toán 11 Tập 1: Cho hàm số .
a) Xét tính liên tục của hàm số tại mỗi điểm x0 ∈ (1; 2).
b) Tìm và so sánh giá trị này với f(2).
c) Với giá trị nào của k thì ?
Lời giải:
a) Tại mỗi điểm x0 ∈ (1; 2) thì f(x) = x + 1
Khi đó: và f(x0) = x0 + 1
Suy ra
Vì vậy hàm số liên tục tại x0.
b) Tại x0 = 2 ta có f(x) = x + 1, khi đó:
f(2) = 2 + 1 = 3
Vậy
c) +) Tại x0 = 1 ta có f(x0) = k;
+) Tại x0 = 1
Dãy (xn) bất kì thỏa mãn 1 < xn ≤ 2 và xn → 1 thì f(xn) = xn + 1 khi đó .
Suy ra
Để thì k = 2.
Thực hành 2 trang 82 Toán 11 Tập 1: Xét tính liên tục của hàm số: trên [1; 2].
Lời giải:
Đặt
Với mọi x0 ∈ (1; 2), ta có:
Ta lại có:
;
.
Vậy hàm số liên tục trên [1; 2].
(k là một hằng số).
a) Với k = 0, xét tính liên tục của hàm số P(x) trên (0; +∞).
b) Với giá trị nào của k thì hàm số P(x) liên tục trên (0; +∞)?
Lời giải:
a) Với k = 0, hàm số
+) Lấy x0 ∈ (0; 400) khi đó P(x) = 4,5x
Suy ra
Do đó P(x) liên tục trên (0; 400).
+) Tại x0 = 400, ta có:
.
.
Suy ra . Do đó không tồn tại .
Vì vậy hàm số không liên tục tại x = 400.
+) Lấy x0 ∈ (400; +∞) khi đó P(x) = 4x
Suy ra
Do đó P(x) liên tục trên (400; +∞) .
Vậy hàm số liên tục trên (0; 400) và (400; +∞).
b) Để hàm số P(x) liên tục trên (0; +∞) thì P(x) phải liên tục trên x0 = 400.
Do đó .
Vậy với k = 200 thì hàm số liên tục trên (0; +∞).
3. Tính liên tục của hàm số sơ cấp
Hoạt động khám phá 3 trang 82 Toán 11 Tập 1: Cho hai hàm số y = f(x) = và y = g(x) = .
a) Tìm tập xác định của mỗi hàm số đã cho.
b) Mỗi hàm số liên tục trên những khoảng nào? Giải thích.
Lời giải:
a) +) Xét hàm số: y = f(x) =
Điều kiện xác định của hàm số là x ≠ 1.
Vậy tập xác định của hàm số là: D = ℝ \ {1}.
+) Xét hàm số: y = g(x) =
Điều kiện xác định của hàm số là: 4 – x ≥ 0 ⇔ x ≤ 4.
Vậy tập xác định của hàm số là: D = (– ∞; 4].
b) +) Xét hàm số f(x):
Với x0 ∈ ( – ∞; 1) thì .
Suy ra hàm số f(x) liên tục trên (– ∞; 1).
Với x0 ∈ ( 1; + ∞) thì .
Suy ra hàm số f(x) liên tục trên (1; + ∞).
+) Xét hàm số g(x):
Với x0 ∈ (– ∞; 4) thì .
Tại x0 = 4 thì .
Vậy hàm số liên tục trên (– ∞; 4].
Thực hành 3 trang 83 Toán 11 Tập 1: Xét tính liên tục của hàm số .
Lời giải:
Đặt y = f(x) =
Tập xác định của hàm số D = (– ∞; 2) ∪ (2; +∞).
Với x0 ∈ ( – ∞; 2) thì
Suy ra hàm số liên tục trên ( – ∞; 2).
Với x0 ∈ ( 2; +∞) thì
Suy ra hàm số liên tục trên (2; +∞).
Thực hành 4 trang 83 Toán 11 Tập 1: Cho hàm số f(x) = . Tìm a để hàm số y = f(x) liên tục trên ℝ.
Lời giải:
+) Với x ≠ 0 thì f(x) = liên tục trên (– ∞; 0) và (0; + ∞).
+) Với x = 0 thì
Ta có: và f(0) = a.
Để y = f(x) liên tục trên ℝ thì f(x) phải liên tục tại x = 0 do đó a = – 2.
T(x) =
Xét tính liên tục của hàm số T(x).
Lời giải:
+) Với x0 ∈ (0; 0,7) hàm số f(x) = 10 000 là hàm đa thức nên liên tục trên (0; 0,7).
+) Với x0 ∈ (0,7; 20) hàm số f(x) = 10 000 + (x – 0,7).14 000 là hàm đa thức nên liên tục trên (0,7; 20).
+) Với x0 ∈ (20; +∞) hàm số f(x) = 280 200 + (x – 20).12 000 là hàm đa thức nên liên tục trên (20; +∞).
+) Tại x0 = 0,7 ta có:
;
[10 000 + (x-0,7).14 000] = 10 000.
Suy ra . Do đó tồn tại .
Mà f(0,7) = 10 000 nên = f(0,7) = 10000.
Vì vậy hàm số liên tục tại x0 = 0,7.
+) Tại x0 = 20 ta có:
[10 000 + (x-0,7).14 000] = 280 200.
[280 200+(x-20).12 000] = 280 200.
Suy ra . Do đó tồn tại .
Mà f(20) = 280 200 nên .
Vì vậy hàm số liên tục tại x = 20.
Vậy hàm số T(x) liên tục trên ℝ.
4. Tổng, hiệu, tích, thương của hàm số liên tục
Lời giải:
Xét hàm số y = h(x) = f(x) + g(x) = có tập xác định D = [4; +∞) \ {1}.
Tại x0 = 2 ∈ D thì = 3 = h(2).
Do đó hàm số liên tục tại x0 = 2.
Thực hành 5 trang 84 Toán 11 Tập 1: Xét tính liên tục của hàm số:
a) y = + 3 - x;
b) y = .cos x.
Lời giải:
a) Đặt y = f(x) = + 3 - x
Tập xác định của hàm số D = ℝ.
Khi đó .
Vậy hàm số liên tục trên ℝ.
b) Đặt y = g(x) = .cos x.
Tập xác định của hàm số D = ℝ\{0}.
Trên các khoảng (– ∞; 0) và (0; +∞) ta thấy hàm số và y = cos x liên tục.
Vậy hàm số đã cho liên tục trại mọi điểm x0 ≠ 0.
a) Viết biểu thức S(x) biểu thị diện tích của tam giác ONP.
b) Hàm số y = S(x) có liên tục trên (– 1; 1) không? Giải thích.
c) Tìm các giới hạn và .
Lời giải:
a) Xét tam giác OMN vuông tại M có:
MN =
Diện tích của tam giác ONP là:
S(x) = .NP.OM = .2..x = x
b) Trên (– 1; 1) hàm số y = xác định và liên tục và hàm số y = x liên tục.
Do đó hàm số S(x) liên tục trên (– 1; 1).
c) Ta có:
.
Bài tập
Bài 1 trang 84 Toán 11 Tập 1: Xét tính liên tục của hàm số sau:
a) f(x) = tại điểm x = 0;
b) f(x) = tại điểm x = 1.
Lời giải:
a) Tại x = 0, ta có:
;
.
Suy ra . Do đó
Mà f(0) = 02 + 1 = 1 nên .
Vậy hàm số đã cho liên tục tại điểm x = 0.
b) Tại x = 1 ta có:
;
.
Suy ra . Do đó không tồn tại .
Vậy hàm số không liên tục tại x = 1.
Bài 2 trang 84 Toán 11 Tập 1: Cho hàm số f(x) = . Tìm a để hàm số f(x) liên tục trên ℝ.
Lời giải:
Ta có:
.
f(-2) = a.
Để hàm số f(x) liên tục trên ℝ thì hàm số liên tục tại x = – 2
= f(-2)
a = -4
Vậy a = – 4 thì hàm số đã cho liên tục trên ℝ.
Bài 3 trang 85 Toán 11 Tập 1: Xét tính liên tục của hàm số sau:
a) f(x) = ;
b) g(x) = ;
c) h(x) = cosx + tanx.
Lời giải:
a) Tập xác định của hàm số D = ℝ \ {– 2; 2}.
Hàm số f(x) = liên tục tại mọi điểm khác – 2 và 2.
b) Tập xác định của hàm số D = [– 2; 2].
Hàm số g(x) = liên tục trên [– 2; 2].
c) Tập xác định của hàm số: D = R\.
Hàm số y = cosx hoặc y = tanx đều liên tục trên các khoảng xác định của nó.
Vậy h(x) = cosx + tanx liên tục trên từng khoảng xác định.
Lời giải:
+) Xét hàm số y = f(x).g(x) có tập xác định D = [1; +∞).
Hàm số f(x) = 2x – sinx, g(x) = đều liên tục trên D.
Vậy hàm số y = f(x).g(x) liên tục trên D.
+) Xét hàm số y = có tập xác định D = (1; +∞).
Hàm số f(x) = 2x – sinx, g(x) = đều liên tục trên D.
Vậy hàm số y = liên tục trên D.
C(x) =
Xét tính liên tục của hàm số C(x).
Lời giải:
+) Với x ∈ (0; 2) ta có: C(x) = 60 000 nên hàm số liên tục trên (0; 2).
+) Với x ∈ (2; 4) ta có: C(x) = 100 000 nên hàm số liên tục trên (2; 4).
+) Với x ∈ (4; 24) ta có: C(x) = 200 000 nên hàm số liên tục trên (4; 24).
+) Tại x = 2 ta có: . Suy ra không tồn tại .
+) Tại x = 4 ta có: . Suy ra không tồn tại .
Lời giải:
+) Ta có: y = liên tục trên (0; R) và y = liên tục trên (R; + ∞).
+) Tại r = R, ta có:
Suy ra . Do đó
Mà nên
Suy ra hàm số liên tục tại x = R.
Vậy hàm số liên tục trên (0; +∞).
Xem thêm các bài giải SGK Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian
Bài 2: Hai đường thẳng song song
Lý thuyết Hàm số liên tục
1. Hàm số liên tục tại 1 điểm
Cho hàm xác định trên khoảng K, . Hàm số được gọi là liên tục tại điểm nếu .
Hàm số không liên tục tại được gọi là gián đoạn tại điểm đó.
*Nhận xét: Để hàm số liên tục tại thì phải có cả 3 điều sau:
2. Hàm số liên tục trên một khoảng, trên một đoạn
- Hàm số xác định trên khoảng
Hàm số được gọi là liên tục trên khoảng nếu nó liên tục tại mọi điểm thuộc khoảng này.
- Hàm số được gọi là liên tục trên đoạn nếu nó liên tục trên khoảng và .
* Nhận xét:
- Đồ thị hàm số liên tục trên một khoảng, đoạn là “đường liền” trên khoảng, đoạn đó.
- Nếu hàm số liên tục trên đoạn và thì phương trình có ít nhất một nghiệm trên khoảng .
3. Tính liên tục của hàm sơ cấp cơ bản
- Hàm số đa thức và hàm số liên tục trên .
- Các hàm số và hàm phân thức hữu tỉ (thương của hai đa thức) liên tục trên tập xác định của chúng.
4. Tổng, hiệu, tích, thương của hàm số liên tục
Giả sử hai hàm số và liên tục tại điểm . Khi đó:
a, Các hàm số và liên tục tại điểm .
b, Hàm số liên tục tại điểm nếu .