Giải SGK Toán 11 Bài 3 (Chân trời sáng tạo): Hàm số liên tục

2 K

Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 11 Bài 3: Hàm số liên tục chi tiết sách Toán 11 Tập 1 Chân trời sáng tạo giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 3: Hàm số liên tục

Giải Toán 11 trang 80 Tập 1

Hoạt động khởi động trang 80 Toán 11 Tập 1: Hai đồ thị ở hai hình dưới đây cho biết phí gửi xe y của ô tô con (tính theo 10 nghìn đồng) theo thời gian gửi x (tính theo giờ) của hai bãi xe. Có nhận xét gì về sự thay đổi của số tiền phí phải trả theo thời gian gửi ở mỗi bãi đỗ xe?

Hoạt động khởi động trang 80 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

+) Bãi xe A:

Dựa vào đồ thị hàm số ta thấy, theo thời gian gửi x (giờ) tăng thì phí gửi xe tăng dần.

+) Bãi xe B:

Dựa vào đồ thị hàm số ta thấy, theo thời gian gửi x (giờ) tăng thì phí gửi xe tăng dần theo nấc.

1. Hàm số liên tục tại một điểm

Hoạt động khám phá 1 trang 80 Toán 11 Tập 1: Cho hàm số Hoạt động khám phá 1 trang 80 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 có đồ thị như Hình 1.

Tại mỗi điểm x0 = 1 và x0 = 2, có tồn tại giới hạn limxx0fx không? Nếu có, giới hạn đó có bằng f(x0) không?

Lời giải:

+) Tại x0 = 1 ta có:

Dãy (xn) bất kì thỏa mãn xn < 1 và xn → 1 thì f(xn) = 1 khi đó limxn1fxn=1.

Dãy (xn) bất kì thỏa mãn 1 < xn ≤ 2 và xn → 1 thì f(xn) = 1 + xn khi đó limx1+fxn=2.

Suy ra limxn1fxnlimxn1+fxn. Do đó không tồn tại limx1fx.

+) Tại x0 = 2

Dãy (xn) bất kì thỏa mãn xn < 2 và xn → 2 thì f(xn) = 1 + xn khi đó limxn2fxn=3.

Dãy (xn) bất kì thỏa mãn 2 < xn ≤ 3 và xn → 2 thì f(xn) = 5 – xn khi đó limx2+fxn=3.

Suy ra limxn2fxn=limxn2+fxn=3. Do đó limx2fx=3.

Ta có f(2) = 1 + 2 = 3.

Vì vậy limx2fx=f2=3.

Giải Toán 11 trang 81 Tập 1

Thực hành 1 trang 81 Toán 11 Tập 1: Xét tính liên tục của hàm số:

a) f(x) = 1 – x2 tại điểm x0 = 3;

b) Thực hành 1 trang 81 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 tại điểm x0 = 1.

Lời giải:

a) Ta có: limx3fx=limx31x2=8 và f(3) = 1 – 32 = – 8.

Do đó limx3fx=f3=8

Vì vậy hàm số liên tục tại x = 3.

b) Tại x0 = 1:

limx1+fx=limx1+x2+1=2 và limx1fx=limx1x=1.

Suy ra limx1+fxlimx1fx

Do đó không tồn tại limx1fx.

Vậy hàm số đã cho không liên tục tại x0 = 1.

2. Hàm số liên tục trên một khoảng, trên một đoạn

Hoạt động khám phá 2 trang 81 Toán 11 Tập 1: Cho hàm số Hoạt động khám phá 2 trang 81 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11.

a) Xét tính liên tục của hàm số tại mỗi điểm x0 ∈ (1; 2).

b) Tìm limx2fx và so sánh giá trị này với f(2).

c) Với giá trị nào của k thì limx1+fx=k?

Lời giải:

a) Tại mỗi điểm x0 ∈ (1; 2) thì f(x) = x + 1

Khi đó: limxx0fx=limxx0x+1=x0+1 và f(x0) = x0 + 1

Suy ra limxx0fx=fx0=x0+1

Vì vậy hàm số liên tục tại x0.

b) Tại x0 = 2 ta có f(x) = x + 1, khi đó:

limx2fx=limx21+x=3

f(2) = 2 + 1 = 3

Vậy limx2fx=f2=3.

c) +) Tại x0 = 1 ta có f(x0) = k;

+) Tại x0 = 1

Dãy (xn) bất kì thỏa mãn 1 < xn ≤ 2 và xn → 1 thì f(xn) = xn + 1 khi đó limxn1+fxn=limxn1+xn+1=2.

Suy ra limx1+fx=2

Để limx1+fx=k thì k = 2.

Giải Toán 11 trang 82 Tập 1

Thực hành 2 trang 82 Toán 11 Tập 1: Xét tính liên tục của hàm số: y=x1+2x trên [1; 2].

Lời giải:

Đặt y=fx=x1+2x

Với mọi x0 ∈ (1; 2), ta có:

limxx0fx=limxx0x1+2x=x01+2x0=fx0

Ta lại có:

limx1+fx=limx1+x1+2x=1=f1;

limx2fx=limx2x1+2x=1=f2.

Vậy hàm số y=x1+2x liên tục trên [1; 2].

Vận dụng 1 trang 82 Toán 11 Tập 1: Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của x (kg) bột đá thạch anh được tính theo công thức sau:

Vận dụng 1 trang 82 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 (k là một hằng số).

a) Với k = 0, xét tính liên tục của hàm số P(x) trên (0; +∞).

b) Với giá trị nào của k thì hàm số P(x) liên tục trên (0; +∞)?

Lời giải:

Vận dụng 1 trang 82 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Với k = 0, hàm số Vận dụng 1 trang 82 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

+) Lấy x0 ∈ (0; 400) khi đó P(x) = 4,5x

Suy ra limxx0Px=limxx04,5x=4,5x0=Px0

Do đó P(x) liên tục trên (0; 400).

+) Tại x0 = 400, ta có:

limx400Px=limx4004,5x=4,5.400=1800.

limx400+Px=limx400+4x=4.400=1600.

Suy ra limx400Pxlimx400+Px. Do đó không tồn tại limx400Px.

Vì vậy hàm số không liên tục tại x = 400.

+) Lấy x0 ∈ (400; +∞) khi đó P(x) = 4x

Suy ra limxx0Px=limxx04x=4x0=Px0

Do đó P(x) liên tục trên (400; +∞) .

Vậy hàm số liên tục trên (0; 400) và (400; +∞).

b) Để hàm số P(x) liên tục trên (0; +∞) thì P(x) phải liên tục trên x0 = 400.

Do đó limx400Px=limx400+Px1800=4.400+kk=200.

Vậy với k = 200 thì hàm số liên tục trên (0; +∞).

3. Tính liên tục của hàm số sơ cấp

Hoạt động khám phá 3 trang 82 Toán 11 Tập 1: Cho hai hàm số y = f(x) = 1x1 và y = g(x) = 4x.

a) Tìm tập xác định của mỗi hàm số đã cho.

b) Mỗi hàm số liên tục trên những khoảng nào? Giải thích.

Lời giải:

a) +) Xét hàm số: y = f(x) = 1x1

Điều kiện xác định của hàm số là x ≠ 1.

Vậy tập xác định của hàm số là: D = ℝ \ {1}.

+) Xét hàm số: y = g(x) = 4x

Điều kiện xác định của hàm số là: 4 – x ≥ 0 ⇔ x ≤ 4.

Vậy tập xác định của hàm số là: D = (– ∞; 4].

b) +) Xét hàm số f(x):

Với x0 ∈ ( – ∞; 1) thì limxx0fx=limxx011x=11x0=fx0.

Suy ra hàm số f(x) liên tục trên (– ∞; 1).

Với x0 ∈ ( 1; + ∞) thì limxx0fx=limxx011x=11x0=fx0.

Suy ra hàm số f(x) liên tục trên (1; + ∞).

+) Xét hàm số g(x):

Với x0 ∈ (– ∞; 4) thì limxx0gx=limxx04x=4x0=gx0.

Tại x0 = 4 thì limx4gx=limx44x=0=g4.

Vậy hàm số liên tục trên (– ∞; 4].

Giải Toán 11 trang 83 Tập 1

Thực hành 3 trang 83 Toán 11 Tập 1: Xét tính liên tục của hàm số y=x24.

Lời giải:

Đặt y = f(x) = x24

Tập xác định của hàm số D = (– ∞; 2) ∪ (2; +∞).

Với x0 ∈ ( – ∞; 2) thì limxx0fx=limxx0x24=x024=fx0

Suy ra hàm số liên tục trên ( – ∞; 2).

Với x0 ∈ ( 2; +∞) thì limxx0fx=limxx0x24=x024=fx0

Suy ra hàm số liên tục trên (2; +∞).

Thực hành 4 trang 83 Toán 11 Tập 1: Cho hàm số f(x) = Thực hành 4 trang 83 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11. Tìm a để hàm số y = f(x) liên tục trên ℝ.

Lời giải:

+) Với x ≠ 0 thì f(x) = x22xx liên tục trên (– ∞; 0) và (0; + ∞).

+) Với x = 0 thì

Ta có: limx0fx=limx0x22xx=limx0xx2x=limx0x2=2 và f(0) = a.

Để y = f(x) liên tục trên ℝ thì f(x) phải liên tục tại x = 0 do đó a = – 2.

Vận dụng 2 trang 83 Toán 11 Tập 1: Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau:

T(x) = Vận dụng 2 trang 83 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Xét tính liên tục của hàm số T(x).

Vận dụng 2 trang 83 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

+) Với x0 ∈ (0; 0,7) hàm số f(x) = 10 000 là hàm đa thức nên liên tục trên (0; 0,7).

+) Với x0 ∈ (0,7; 20) hàm số f(x) = 10 000 + (x – 0,7).14 000 là hàm đa thức nên liên tục trên (0,7; 20).

+) Với x0 ∈ (20; +∞) hàm số f(x) = 280 200 + (x – 20).12 000 là hàm đa thức nên liên tục trên (20; +∞).

+) Tại x0 = 0,7 ta có:

limx0,7fx=limx0,710000=10000;

limx0,7+fx=limx0,7+[10 000 + (x-0,7).14 000] = 10 000.

Suy ra limx0,7fx=limx0,7+fx=10000. Do đó tồn tại limx0,7fx=10000.

Mà f(0,7) = 10 000 nên limx0,7fx= f(0,7) = 10000.

Vì vậy hàm số liên tục tại x0 = 0,7.

+) Tại x0 = 20 ta có:

limx20fx=limx20[10 000 + (x-0,7).14 000] = 280 200.

limx20+fx=limx20+[280 200+(x-20).12 000] = 280 200.

Suy ra limx20fx=limx20+fx=280200. Do đó tồn tại limx20fx=280200.

Mà f(20) = 280 200 nên limx20fx=f20=280200.

Vì vậy hàm số liên tục tại x = 20.

Vậy hàm số T(x) liên tục trên ℝ.

4. Tổng, hiệu, tích, thương của hàm số liên tục

Hoạt động khám phá 4 trang 83 Toán 11 Tập 1: Cho hai hàm số y = f(x) = 1x1 và y = g(x) = 4x. Hàm số y = f(x) + g(x) có liên tục tại x = 2 không? Giải thích.

Lời giải:

Xét hàm số y = h(x) = f(x) + g(x) = 1x1+4x có tập xác định D = [4; +∞) \ {1}.

Tại x0 = 2 ∈ D thì limx2hx=limx21x1+4x = 3 = h(2).

Do đó hàm số liên tục tại x0 = 2.

Giải Toán 11 trang 84 Tập 1

Thực hành 5 trang 84 Toán 11 Tập 1: Xét tính liên tục của hàm số:

a) y = x2+1 + 3 - x;

b) y = x21x.cos x.

Lời giải:

a) Đặt y = f(x) = x2+1 + 3 - x

Tập xác định của hàm số D = ℝ.

Khi đó limxx0fx=limxx0x2+1+3x=x02+1+3x0=fx0.

Vậy hàm số liên tục trên ℝ.

b) Đặt y = g(x) = x21x.cos x.

Tập xác định của hàm số D = ℝ\{0}.

Trên các khoảng (– ∞; 0) và (0; +∞) ta thấy hàm số y=x21x và y = cos x liên tục.

Vậy hàm số đã cho liên tục trại mọi điểm x0 ≠ 0.

Vận dụng 3 trang 84 Toán 11 Tập 1: Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) tâm O, bán kính bằng 1. Một đường thẳng d thay đổi, luôn vuông góc với trục hoành, cắt trục hoành tại điểm M có hoành độ x (– 1 < x < 1) và cắt đường tròn (C) tại các điểm N và P (xem Hình 6).

a) Viết biểu thức S(x) biểu thị diện tích của tam giác ONP.

b) Hàm số y = S(x) có liên tục trên (– 1; 1) không? Giải thích.

c) Tìm các giới hạn limx1Sx và limx1+Sx.

Vận dụng 3 trang 84 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

a) Xét tam giác OMN vuông tại M có:

MN = ON2OM2=1x2

NP=21x2

Diện tích của tam giác ONP là:

S(x) = 12.NP.OM = 12.2.1-x2.x = x1-x2

b) Trên (– 1; 1) hàm số y = 1-x2 xác định và liên tục và hàm số y = x liên tục.

Do đó hàm số S(x) liên tục trên (– 1; 1).

c) Ta có:

limx1+Sx=limx1+1x2.x=0

limx1Sx=limx11x2.x=0.

Bài tập

Bài 1 trang 84 Toán 11 Tập 1: Xét tính liên tục của hàm số sau:

a) f(x) = Bài 1 trang 84 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 tại điểm x = 0;

b) f(x) = Bài 1 trang 84 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 tại điểm x = 1.

Lời giải:

a) Tại x = 0, ta có:

limx0+fx=limx0+x2+1=1;

limx0fx=limx01x=1.

Suy ra limx0+fx=limx0fx=1. Do đó limx0fx=1

Mà f(0) = 02 + 1 = 1 nên limx0fx=f0=1.

Vậy hàm số đã cho liên tục tại điểm x = 0.

b) Tại x = 1 ta có:

limx1+fx=limx1+x2+2=3;

limx1fx=limx1x=1.

Suy ra limx1+fxlimx1fx. Do đó không tồn tại limx1fx.

Vậy hàm số không liên tục tại x = 1.

Bài 2 trang 84 Toán 11 Tập 1: Cho hàm số f(x) = Bài 2 trang 84 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11. Tìm a để hàm số f(x) liên tục trên ℝ.

Lời giải:

Ta có:

limx2fx=limx2x24x+2=limx2x2x+2x+2=limx2x2=4.

f(-2) = a.

Để hàm số f(x) liên tục trên ℝ thì hàm số liên tục tại x = – 2

limx2fx= f(-2)

a = -4

Vậy a = – 4 thì hàm số đã cho liên tục trên ℝ.

Giải Toán 11 trang 85 Tập 1

Bài 3 trang 85 Toán 11 Tập 1: Xét tính liên tục của hàm số sau:

a) f(x) = xx24;

b) g(x) = 9-x2;

c) h(x) = cosx + tanx.

Lời giải:

a) Tập xác định của hàm số D = ℝ \ {– 2; 2}.

Hàm số f(x) = xx24 liên tục tại mọi điểm khác – 2 và 2.

b) Tập xác định của hàm số D = [– 2; 2].

Hàm số g(x) = 9-x2 liên tục trên [– 2; 2].

c) Tập xác định của hàm số: D = R\Bài 3 trang 85 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11.

Hàm số y = cosx hoặc y = tanx đều liên tục trên các khoảng xác định của nó.

Vậy h(x) = cosx + tanx liên tục trên từng khoảng xác định.

Bài 4 trang 85 Toán 11 Tập 1: Cho hàm số f(x) = 2x – sinx, g(x) = x1. Xét tính liên tục của hàm số y = f(x).g(x) và y = fxgx.

Lời giải:

+) Xét hàm số y = f(x).g(x) có tập xác định D = [1; +∞).

Hàm số f(x) = 2x – sinx, g(x) = x1 đều liên tục trên D.

Vậy hàm số y = f(x).g(x) liên tục trên D.

+) Xét hàm số y = fxgx có tập xác định D = (1; +∞).

Hàm số f(x) = 2x – sinx, g(x) = x1 đều liên tục trên D.

Vậy hàm số y = fxgx liên tục trên D.

Bài 5 trang 85 Toán 11 Tập 1: Một bãi đậu xe ô tô đưa ra giá C(x) (đồng) khi thời gian đậu xe là x (giờ) như sau:

C(x) = Bài 5 trang 85 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Xét tính liên tục của hàm số C(x).

Lời giải:

+) Với x ∈ (0; 2) ta có: C(x) = 60 000 nên hàm số liên tục trên (0; 2).

+) Với x ∈ (2; 4) ta có: C(x) = 100 000 nên hàm số liên tục trên (2; 4).

+) Với x ∈ (4; 24) ta có: C(x) = 200 000 nên hàm số liên tục trên (4; 24).

+) Tại x = 2 ta có: limx2Cx=60000100000=limx2+Cx. Suy ra không tồn tại limx2Cx.

+) Tại x = 4 ta có: limx4Cx=100000200000=limx4+Cx. Suy ra không tồn tại limx4Cx.

Bài 6 trang 85 Toán 11 Tập 1: Lực hấp dẫn do Trái Đất tác dụng lên một đơn vị khối lượng ở khoảng cách r tính từ tâm của nó là F(r) = Bài 6 trang 85 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 trong đó M là khối lượng, R là bán kính của Trái Đất, G là hằng số hấp dẫn. Hàm số F(r) có liên tục trên (0; +∞) không?

Lời giải:

+) Ta có: y = GMrR3 liên tục trên (0; R) và y = GMr2 liên tục trên (R; + ∞).

+) Tại r = R, ta có:

limrRFr=limrRGMrR3=GMR2

limrR+Fr=limrRGMr2=GMR2

Suy ra limrRFr=limrR+Fr. Do đó limrRFr=GMR2

Mà FR=GMR2 nên limrRFr=FR=GMR2

Suy ra hàm số liên tục tại x = R.

Vậy hàm số liên tục trên (0; +∞).

Xem thêm các bài giải SGK Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Bài 2: Giới hạn của hàm số

Bài 3: Hàm số liên tục

Bài tập cuối chương 3

Đánh giá

0

0 đánh giá