Giải Toán 11 trang 85 Tập 1 Chân trời sáng tạo

618

Với lời giải Toán 11 trang 85 Tập 1 chi tiết trong Bài 3: Hàm số liên tục sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 3: Hàm số liên tục

Bài 3 trang 85 Toán 11 Tập 1: Xét tính liên tục của hàm số sau:

a) f(x) = xx24;

b) g(x) = 9-x2;

c) h(x) = cosx + tanx.

Lời giải:

a) Tập xác định của hàm số D = ℝ \ {– 2; 2}.

Hàm số f(x) = xx24 liên tục tại mọi điểm khác – 2 và 2.

b) Tập xác định của hàm số D = [– 2; 2].

Hàm số g(x) = 9-x2 liên tục trên [– 2; 2].

c) Tập xác định của hàm số: D = R\Bài 3 trang 85 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11.

Hàm số y = cosx hoặc y = tanx đều liên tục trên các khoảng xác định của nó.

Vậy h(x) = cosx + tanx liên tục trên từng khoảng xác định.

Bài 4 trang 85 Toán 11 Tập 1: Cho hàm số f(x) = 2x – sinx, g(x) = x1. Xét tính liên tục của hàm số y = f(x).g(x) và y = fxgx.

Lời giải:

+) Xét hàm số y = f(x).g(x) có tập xác định D = [1; +∞).

Hàm số f(x) = 2x – sinx, g(x) = x1 đều liên tục trên D.

Vậy hàm số y = f(x).g(x) liên tục trên D.

+) Xét hàm số y = fxgx có tập xác định D = (1; +∞).

Hàm số f(x) = 2x – sinx, g(x) = x1 đều liên tục trên D.

Vậy hàm số y = fxgx liên tục trên D.

Bài 5 trang 85 Toán 11 Tập 1: Một bãi đậu xe ô tô đưa ra giá C(x) (đồng) khi thời gian đậu xe là x (giờ) như sau:

C(x) = Bài 5 trang 85 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Xét tính liên tục của hàm số C(x).

Lời giải:

+) Với x ∈ (0; 2) ta có: C(x) = 60 000 nên hàm số liên tục trên (0; 2).

+) Với x ∈ (2; 4) ta có: C(x) = 100 000 nên hàm số liên tục trên (2; 4).

+) Với x ∈ (4; 24) ta có: C(x) = 200 000 nên hàm số liên tục trên (4; 24).

+) Tại x = 2 ta có: limx2Cx=60000100000=limx2+Cx. Suy ra không tồn tại limx2Cx.

+) Tại x = 4 ta có: limx4Cx=100000200000=limx4+Cx. Suy ra không tồn tại limx4Cx.

Bài 6 trang 85 Toán 11 Tập 1: Lực hấp dẫn do Trái Đất tác dụng lên một đơn vị khối lượng ở khoảng cách r tính từ tâm của nó là F(r) = Bài 6 trang 85 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 trong đó M là khối lượng, R là bán kính của Trái Đất, G là hằng số hấp dẫn. Hàm số F(r) có liên tục trên (0; +∞) không?

Lời giải:

+) Ta có: y = GMrR3 liên tục trên (0; R) và y = GMr2 liên tục trên (R; + ∞).

+) Tại r = R, ta có:

limrRFr=limrRGMrR3=GMR2

limrR+Fr=limrRGMr2=GMR2

Suy ra limrRFr=limrR+Fr. Do đó limrRFr=GMR2

Mà FR=GMR2 nên limrRFr=FR=GMR2

Suy ra hàm số liên tục tại x = R.

Vậy hàm số liên tục trên (0; +∞).

Đánh giá

0

0 đánh giá