Với giải Hoạt động khám phá 2 trang 81 Toán 11 Tập 1 Chân trời sáng tạo chi tiết trong Bài 3: Hàm số liên tục giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải bài tập Toán lớp 11 Bài 3: Hàm số liên tục
Hoạt động khám phá 2 trang 81 Toán 11 Tập 1: Cho hàm số .
a) Xét tính liên tục của hàm số tại mỗi điểm x0 ∈ (1; 2).
b) Tìm và so sánh giá trị này với f(2).
c) Với giá trị nào của k thì ?
Lời giải:
a) Tại mỗi điểm x0 ∈ (1; 2) thì f(x) = x + 1
Khi đó: và f(x0) = x0 + 1
Suy ra
Vì vậy hàm số liên tục tại x0.
b) Tại x0 = 2 ta có f(x) = x + 1, khi đó:
f(2) = 2 + 1 = 3
Vậy
c) +) Tại x0 = 1 ta có f(x0) = k;
+) Tại x0 = 1
Dãy (xn) bất kì thỏa mãn 1 < xn ≤ 2 và xn → 1 thì f(xn) = xn + 1 khi đó .
Suy ra
Để thì k = 2.
Lý thuyết Hàm số liên tục trên một khoảng, trên một đoạn
- Hàm số xác định trên khoảng
Hàm số được gọi là liên tục trên khoảng nếu nó liên tục tại mọi điểm thuộc khoảng này.
- Hàm số được gọi là liên tục trên đoạn nếu nó liên tục trên khoảng và .
* Nhận xét:
- Đồ thị hàm số liên tục trên một khoảng, đoạn là “đường liền” trên khoảng, đoạn đó.
- Nếu hàm số liên tục trên đoạn và thì phương trình có ít nhất một nghiệm trên khoảng .
Xem thêm các lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Hoạt động khám phá 1 trang 80 Toán 11 Tập 1: Cho hàm số có đồ thị như Hình 1.....
Thực hành 1 trang 81 Toán 11 Tập 1: Xét tính liên tục của hàm số:...
Hoạt động khám phá 2 trang 81 Toán 11 Tập 1: Cho hàm số .....
Thực hành 2 trang 82 Toán 11 Tập 1: Xét tính liên tục của hàm số: trên [1; 2]....
Hoạt động khám phá 3 trang 82 Toán 11 Tập 1: Cho hai hàm số y = f(x) = và y = g(x) = ....
Thực hành 3 trang 83 Toán 11 Tập 1: Xét tính liên tục của hàm số .....
Thực hành 5 trang 84 Toán 11 Tập 1: Xét tính liên tục của hàm số:.....
Bài 1 trang 84 Toán 11 Tập 1: Xét tính liên tục của hàm số sau:....
Bài 2 trang 84 Toán 11 Tập 1: Cho hàm số f(x) = . Tìm a để hàm số f(x) liên tục trên ℝ....
Bài 3 trang 85 Toán 11 Tập 1: Xét tính liên tục của hàm số sau:...
Xem thêm các bài giải SGK Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: