Hoạt động khám phá 3 trang 82 Toán 11 Tập 1 Chân trời sáng tạo | Giải bài tập Toán lớp 11

464

Với giải Hoạt động khám phá 3 trang 82 Toán 11 Tập 1 Chân trời sáng tạo chi tiết trong Bài 3: Hàm số liên tục giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 3: Hàm số liên tục

Hoạt động khám phá 3 trang 82 Toán 11 Tập 1: Cho hai hàm số y = f(x) = 1x1 và y = g(x) = 4x.

a) Tìm tập xác định của mỗi hàm số đã cho.

b) Mỗi hàm số liên tục trên những khoảng nào? Giải thích.

Lời giải:

a) +) Xét hàm số: y = f(x) = 1x1

Điều kiện xác định của hàm số là x ≠ 1.

Vậy tập xác định của hàm số là: D = ℝ \ {1}.

+) Xét hàm số: y = g(x) = 4x

Điều kiện xác định của hàm số là: 4 – x ≥ 0 ⇔ x ≤ 4.

Vậy tập xác định của hàm số là: D = (– ∞; 4].

b) +) Xét hàm số f(x):

Với x0 ∈ ( – ∞; 1) thì limxx0fx=limxx011x=11x0=fx0.

Suy ra hàm số f(x) liên tục trên (– ∞; 1).

Với x0 ∈ ( 1; + ∞) thì limxx0fx=limxx011x=11x0=fx0.

Suy ra hàm số f(x) liên tục trên (1; + ∞).

+) Xét hàm số g(x):

Với x0 ∈ (– ∞; 4) thì limxx0gx=limxx04x=4x0=gx0.

Tại x0 = 4 thì limx4gx=limx44x=0=g4.

Vậy hàm số liên tục trên (– ∞; 4].

Lý thuyết Tính liên tục của hàm sơ cấp cơ bản

- Hàm số đa thức và hàm số y=sinx,y=cosx liên tục trên R.

- Các hàm số y=tanx,y=cotx,y=xvà hàm phân thức hữu tỉ (thương của hai đa thức) liên tục trên tập xác định của chúng.

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá