Trong không gian Oxyz, cho hai đường thẳng: Δ1: (x - 1)/3 = (y - 3)/1 = (z - 2)/2 và Δ2:(x - 1)/3 = (x + 1)/1 = z/2

243

Với giải Bài 5.15 trang 48 Toán 12 Tập 2 Kết nối tri thức chi tiết trong Bài 15: Phương trình đường thẳng trong không gian giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 15: Phương trình đường thẳng trong không gian

Bài 5.15 trang 48 Toán 12 Tập 2: Trong không gian Oxyz, cho hai đường thẳng: Δ1:x13=y31=z22 và Δ2:x13=x+11=z2

a) Chứng minh rằng ∆1 và ∆2 song song với nhau.

b) Viết phương trình mặt phẳng (P) chứa ∆1 và ∆2.

Lời giải:

a) Đường thẳng ∆1 đi qua A(1; 3; 2) và có vectơ chỉ phương u1=3;1;2

Đường thẳng ∆2 đi qua B(1; −1; 0) và có vectơ chỉ phương u2=3;1;2

Vì u1=u2=3;1;2 và A ∉ ∆2 do đó ∆1 và ∆2 song song với nhau.

b) Có AB=0;4;2

Mặt phẳng (P) chứa ∆1 và ∆2 có một vectơ pháp tuyến là n=AB,u1=6;6;12

Mặt phẳng (P) đi qua A(1; 3; 2) và có vectơ pháp tuyến n=6;6;12 có phương trình là: −6(x – 1) −6(y – 3) + 12(z – 2) = 0 ⇔ 6x + 6y – 12z = 0 hay x + y – 2z = 0.

Đánh giá

0

0 đánh giá