Trong không gian Oxyz, xét vị trí tương đối giữa hai đường thẳng Δ1: x = 1 + 2t, y = 3 + t, z = 1 - t và Δ2: x = s, y = 1 + 2s, z = 3s

127

Với giải Luyện tập 10 trang 48 Toán 12 Tập 2 Kết nối tri thức chi tiết trong Bài 15: Phương trình đường thẳng trong không gian giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 15: Phương trình đường thẳng trong không gian

Luyện tập 10 trang 48 Toán 12 Tập 2: Trong không gian Oxyz, xét vị trí tương đối giữa hai đường thẳng Δ1:x=1+2ty=3+tz=1t và Δ2:x=sy=1+2sz=3s

Lời giải:

Đường thẳng ∆1 đi qua điểm A(1; 3; 1) và có vectơ chỉ phương uΔ1=2;1;1.

Đường thẳng ∆2 đi qua điểm B(0; 1; 0) và có vectơ chỉ phương uΔ2=1;2;3.

Có uΔ1,uΔ2=5;7;3AB=1;2;1

Có AB.uΔ1,uΔ2=5+143=60

Vậy ∆1 và ∆2 chéo nhau.

Đánh giá

0

0 đánh giá