Trong không gian Oxyz, cho hai mặt phẳng (P): x + 3y + z + 2 = 0 và (Q): x + 3y + z + 5 = 0

80

Với giải Luyện tập 11 trang 39 Toán 12 Tập 2 Kết nối tri thức chi tiết trong Bài 14: Phương trình mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 14: Phương trình mặt phẳng

Luyện tập 11 trang 39 Toán 12 Tập 2: Trong không gian Oxyz, cho hai mặt phẳng (P): x + 3y + z + 2 = 0 và (Q): x + 3y + z + 5 = 0.

a) Chứng minh rằng (P) và (Q) song song với nhau.

b) Lấy một điểm thuộc (P), tính khoảng cách từ điểm đó đến (Q). Từ đó tính khoảng cách giữa hai mặt phẳng (P) và (Q).

Lời giải:

a) Ta có nP=1;3;1,nQ=1;3;1

Vì nP=nQ và 2 ≠ 5. Do đó (P) và (Q) song song với nhau.

b) Lấy điểm M(0; 0; −2) ∈ (P).

Khi đó khoảng cách từ M đến mặt phẳng (Q) là:

dM,Q=2+51+32+1=311

Do đó dM,Q=dP,Q=311

Đánh giá

0

0 đánh giá