Trong không gian Oxyz, cho điểm M(x0; y0; z0) và mặt phẳng (P): Ax + By + Cz + D = 0 có vectơ pháp tuyến n = (A; B; C)

60

Với giải HĐ10 trang 38 Toán 12 Tập 2 Kết nối tri thức chi tiết trong Bài 14: Phương trình mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 14: Phương trình mặt phẳng

HĐ10 trang 38 Toán 12 Tập 2: Trong không gian Oxyz, cho điểm M(x0; y0; z0) và mặt phẳng (P): Ax + By + Cz + D = 0 có vectơ pháp tuyến n=A;B;C. Gọi N là hình chiếu vuông góc của M trên (P) (H.5.13).

a) Giải thích vì sao tồn tại số k để MN=kn. Tính tọa độ của N theo k, tọa độ của M và các hệ số A, B, C, D.

b) Thay tọa độ của N vào phương trình mặt phẳng (P) để từ đó tính k theo tọa độ của M và các hệ số A, B, C, D.

c) Từ MN=kn, hãy tính độ dài của đoạn thẳng MN theo tọa độ của M và các hệ số A, B, C, D. Từ đó suy ra công thức tính khoảng cách từ điểm M đến mặt phẳng (P).

HĐ10 trang 38 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

a) Vì N là hình chiếu vuông góc của M trên (P) nên MN(P)

Do đó MN sẽ cùng phương với vectơ pháp tuyến n

Vậy tồn tại một số k sao cho MN=kn

Giả sử N(x1; y1; z1). Suy ra MN=x1x0;y1y0;z1z0

Vì MN=kn nên x1x0=kAy1y0=kBz1z0=kCx1=x0+kAy1=y0+kBz1=z0+kC

b) Thay tọa độ điểm N vào (P), ta được

A(x0 + kA) + B(y0 + kB) + C(z0 + kC) + D = 0

⇔ k(A2 + B2 + C2) + Ax0 + By0 + Cz0 + D = 0

k=Ax0By0Cz0DA2+B2+C2

c) Ta có MN=knMN=kA2+B2+C2

Mà k=Ax0By0Cz0DA2+B2+C2 nên MN=Ax0By0Cz0DA2+B2+C2A2+B2+C2

MN=Ax0+By0+Cz0+DA2+B2+C2

Do đó khoảng cách từ điểm M đến mặt phẳng (P) là d=Ax0+By0+Cz0+DA2+B2+C2

Đánh giá

0

0 đánh giá