Trong không gian Oxyz, cho hai mặt phẳng: (α): Ax + By + Cz + D = 0, (β): A'x + B'y + C'z + D' = 0

155

Với giải HĐ8 trang 35 Toán 12 Tập 2 Kết nối tri thức chi tiết trong Bài 14: Phương trình mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 14: Phương trình mặt phẳng

HĐ8 trang 35 Toán 12 Tập 2: Trong không gian Oxyz, cho hai mặt phẳng: (α): Ax + By + Cz + D = 0, (β): A'x + B'y + C'z + D' = 0, với hai vectơ pháp tuyến n=A;B;C,n'=A';B';C' tương ứng.

a) Góc giữa hai mặt phẳng (α), (β) và góc giữa hai giá của n,n' có mối quan hệ gì?

b) Hai mặt phẳng (α) và (β) vuông góc với nhau khi và chỉ khi hai vectơ pháp tuyến tương ứng n,n' có mối quan hệ gì?

Lời giải:

a) Vì n,n' lần lượt là vectơ pháp tuyến của mặt phẳng (α) và (β) nên giá của n,n' lần lượt vuông góc với mặt phẳng (α) và (β).

Do đó góc giữa hai mặt phẳng (α), (β) bằng góc giữa hai giá của n,n'

b) Hai mặt phẳng (α) và (β) vuông góc với nhau khi và chỉ khi hai vectơ pháp tuyến tương ứng n,n' vuông góc với nhau.

Đánh giá

0

0 đánh giá