Xác định tọa độ của vị trí M1, M2, M3 của vật tương ứng với các thời điểm t = 0, t = π/2, t = π

83

Với giải Vận dụng 2 trang 35 Toán 12 Tập 2 Kết nối tri thức chi tiết trong Bài 14: Phương trình mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 14: Phương trình mặt phẳng

Vận dụng 2 trang 35 Toán 12 Tập 2: Trong tình huống mở đầu, hãy thực hiện các bước sau và trả lời câu hỏi đã được nêu ra.

a) Xác định tọa độ của vị trí M1, M2, M3 của vật tương ứng với các thời điểm t = 0, t=π2, t = π.

b) Chứng minh rằng M1, M2, M3 không thẳng hàng và viết phương trình mặt phẳng (M1M2M3).

c) Vị trí M(cost – sint; cost + sint; cost) có luôn thuộc mặt phẳng (M1M2M3) hay không?

Lời giải:

a) Thời điểm t = 0, vật ở vị trí M1(1; 1; 1).

Thời điểm t=π2, vật ở vị trí M2(−1; 1; 0).

Thời điểm t = π, vật ở vị trí M3(−1; −1; −1).

b) Có M1M2=2;0;1 và M1M3=2;2;2 không cùng phương nên ba điểm M1, M2, M3 không thẳng hàng.

Mặt phẳng (M1M2M3) có M1M2=2;0;1 và M1M3=2;2;2 là cặp vectơ chỉ phương nên có vectơ pháp tuyến

n=M1M2,M1M3=0122;1222;2022=2;2;4

Mặt phẳng (M1M2M3) đi qua M1(1; 1; 1) và có vectơ pháp tuyến n=2;2;4 có phương trình là: −2(x – 1) – 2(y – 1) + 4(z – 1) = 0 hay 2x + 2y – 4z = 0.

c) Ta có 2(cost – sint) + 2(cost + sint) – 4 cost = 0 nên vị trí M(cost – sint; cost + sint; cost) luôn thuộc mặt phẳng (M1M2M3).

Do đó vị trí M(cost – sint; cost + sint; cost) luôn thuộc mặt phẳng 2x + 2y – 4z = 0.

Đánh giá

0

0 đánh giá