Trong một kì thi tuyển sinh có ba môn thi Toán, Văn, Tiếng Anh

190

Với giải Vận dụng 4 trang 37 Toán 12 Tập 2 Kết nối tri thức chi tiết trong Bài 14: Phương trình mặt phẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 14: Phương trình mặt phẳng

Vận dụng 4 trang 37 Toán 12 Tập 2: Trong một kì thi tuyển sinh có ba môn thi Toán, Văn, Tiếng Anh. Trong không gian Oxyz, người ta biểu diễn kết quả thi của mỗi thí sinh bởi điểm có hoành độ, tung độ, cao độ tương ứng là điểm Toán, Văn, Tiếng Anh của thí sinh đó.

a) Chứng minh rằng các điểm biểu diễn tương ứng với các thí sinh có tổng số điểm ba môn thi bằng 27 (nếu có) cùng thuộc mặt phẳng có phương trình x + y + z – 27 = 0.

b) Chứng minh rằng tồn tại một số mặt phẳng đôi một song song với nhau sao cho hai điểm biểu diễn ứng với thí sinh có tổng số điểm thi bằng nhau thì cùng thuộc một mặt phẳng trong số các mặt phẳng đó.

Vận dụng 4 trang 37 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

a) Giả sử một thí sinh có số điểm Toán, Văn, Tiếng Anh lần lượt là x; y; z.

Tổng điểm của thí sinh này là: x + y + z = 27.

Điều này có nghĩa là điểm (x; y; z) thỏa mãn phương trình:

x + y + z = 27 hay x + y + z – 27 = 0.

Do đó tất cả các điểm (x; y; z) biểu diễn tương ứng với các thí sinh có tổng số điểm ba môn thi bằng 27 (nếu có) cùng thuộc mặt phẳng có phương trình x + y + z – 27 = 0.

b) Giả sử S là tổng điểm thi của một thí sinh. Khi đó phương trình biểu diễn các điểm có tổng số điểm thi bằng S là: x + y + z = S hay x + y + z – S = 0.

Các mặt phẳng có phương trình dạng: x + y + z – S = 0 với S là tổng số điểm thi của các thí sinh là các mặt phẳng song song với nhau vì chúng có cùng vectơ pháp tuyến là (1; 1; 1).

Do đó, tất cả các điểm (x; y; z) biểu diễn kết quả của các thí sinh có tổng số điểm thi bằng nhau cùng thuộc một mặt phẳng trong số các mặt phẳng song song này.

Đánh giá

0

0 đánh giá