Cho đồ thị hàm số y = f(t) như Hình 32. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(t)

270

Với giải Bài 6 trang 40 Toán 12 Tập 2 Cánh diều chi tiết trong Bài 4: Ứng dụng hình học của tích phân giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 4: Ứng dụng hình học của tích phân

Bài 6 trang 40 Toán 12 Tập 2: Cho đồ thị hàm số y = f(t) như Hình 32.

Bài 6 trang 40 Toán 12 Cánh diều Tập 2 | Giải Toán 12

a) Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(t), trục Ot và hai đường thẳng t = 0, t = 2.

b) Hỏi 01fudu biểu thị cho phần diện tích của hình phẳng giới hạn bởi các đường nào trong Hình 32.

Lời giải:

a)

Hình phẳng giới hạn bởi đồ thị hàm số y = f(t), trục Ot và hai đường thẳng t = 0, t = 2 là hình thang vuông OABC (xem hình dưới).

Bài 6 trang 40 Toán 12 Cánh diều Tập 2 | Giải Toán 12

Ta có SOABC = AB+OC2BC=1+222=3.

Vậy diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(t), trục Ot và hai đường thẳng t = 0, t = 2 bằng 3.

b) Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(t), trục Ot và hai đường thẳng t = 0, t = 1 là: V=01ftdt=01ftdt=01fudu.

Do đó, 01fudu biểu thị cho phần diện tích của hình phẳng giới hạn bởi đồ thị hàm số y = f(t), trục Ot và hai đường thẳng t = 0, t = 1.

Đánh giá

0

0 đánh giá