Một tấm bìa tạo bởi năm đường tròn đồng tâm lần lượt có bán kính là 5 cm, 10 cm, 15 cm

365

Với giải Vận dụng 2 trang 94 Toán 9 Tập 1 Kết nối tri thức chi tiết trong Bài 15: Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 15: Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên

Vận dụng 2 trang 94 Toán 9 Tập 1: Một tấm bìa tạo bởi năm đường tròn đồng tâm lần lượt có bán kính là 5 cm, 10 cm, 15 cm, 20 cm và 30 cm (H.5.17).

Vận dụng 2 trang 94 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

Giả thiết rằng người ném phi tiêu một cách ngẫu nhiên và luôn trúng bia. Tính xác suất ném trúng vòng 8 (hình vành khuyên nằm giữa đường tròn thứ hai và thứ ba), biết rằng xác xuất cần tìm bằng tỉ số giữa diện tích của hình vành khuyên tương ứng với diện tích của hình tròn lớn nhất.

Lời giải:

Diện tích của vòng 8 là: π(152 − 102) = 125π (cm2).

Diện tích hình tròn lớn nhất là: π . 302 = 900π (cm2).

Xác suất ném trúng vòng 8 là: 125π900π=536.

Vậy xác suất ném trúng vòng 8 là 536.

Lý Thuyết Hình quạt tròn và hình vành khuyên

Khái niệm hình quạt tròn

Lý thuyết Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 3)

Hình quạt tròn là phần hình tròn giới hạn bởi một cung tròn và hai bán kính đi qua hai đầu mút của cung đó.

Khái niệm hình vành khuyên

Lý thuyết Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 4)

Hình vành khuyên (còn gọi là hình vành khăn) là phần nằm giữa hai đường tròn có cùng tâm và bán kính khác nhau (còn gọi là hai đường tròn đồng tâm)

Diện tích hình quạt tròn

Diện tích Sq của hình quạt tròn bán kính R ứng với cung no:

Sq=n360πR2=l.R2

Diện tích hình vành khuyên

Diện tích Sv của hình vành khuyên tạo bởi hai đường tròn đồng tâm và có bán kính R và r:

Sv=π(R2r2) (với R > r)

Tỉ số giữa diện tích hình quạt tròn ứng với cung n0 và diện tích hình tròn (cùng bán kính) đúng bằng n360 và bằng tỉ số giữa độ dài cung n0 và độ dài đường tròn.

Ví dụ:

1. Diện tích hình quạt tròn có độ dài tương ứng với nó là l=4πcm, bán kính là R = 5cm là:

Sq=l.R2=4π.52=10π(cm2)

2. Diện tích hình vành khuyên nằm giữa hai đường tròn đồng tâm có bán kính là 3m và 5m là:

Sv=π(5232)=16π(m2)

Đánh giá

0

0 đánh giá