Giải SGK Toán 9 Bài 14 (Kết nối tri thức): Cung và dây của một đường tròn

0.9 K

Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 9 Bài 14: Cung và dây của một đường tròn chi tiết sách Toán 9 Tập 1 Kết nối tri thức giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 14: Cung và dây của một đường tròn

Mở đầu trang 87 Toán 9 Tập 1: Trong các cuộc thi đấu thể thao, người ta thường tổ chức thi bắn cung. Thuở xưa, cây cung được làm ra bằng cách buộc một sợi dây (gọi là dây cung) vào hai đầu của một đoạn tre (hoặc gỗ) có tính đàn hồi cao. Đoạn tre bị kéo căng, cong lại tạo nên hình ảnh của một phần đường tròn, đó cũng chính là hình ảnh “cung” trong Toán học. Trong bài này chúng ta sẽ tìm hiểu về những vấn đề liên quan đến khái niệm này.

1. Dây và đường kính của đường tròn

HĐ trang 87 Toán 9 Tập 1: Xét dây AB tùy ý không đi qua tâm của đường tròn (O; R) (H.5.7). Dựa vào quan hệ giữa các cạnh của tam giác AOB, chứng minh AB < 2R.

HĐ trang 87 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

Lời giải:

Xét tam giác AOB có: AB < OA + OB (bất đẳng thức tam giác).

Mà OA = OB = R nên AB < 2R.

Luyện tập 1 trang 88 Toán 9 Tập 1: Cho đường tròn đường kính BC. Chứng minh rằng với điểm A bất kì (khác B và C) trên đường tròn, ta đều có: BC < AB + AC < 2BC.

 

Lời giải:

Luyện tập 1 trang 88 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

Xét tam giác ABC có: BC < AB + AC (bất đẳng thức tam giác).          (1)

Xét đường tròn đường kính BC có dây cung AB, AC ta có: AB < BC, AC < BC.

Suy ra: AB + AC < 2BC.           (2)

Từ (1) và (2) suy ra: BC < AB + AC < 2BC.

2. Góc ở tâm, cung và số đo của một cung

Câu hỏi trang 89 Toán 9 Tập 1: Tại sao số đo cung lớn của một đường tròn luôn lớn hơn 180°?

 

Lời giải:

Câu hỏi trang 89 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

Gọi sđ  AB  nhỏ là sđ  AmB ; sđ  AB lớn là sđ  AnB .

Xét đường tròn tâm O ta có  sđ  AmB+sđ  AnB=360°.

 sđ  AnB>sđ  AmB .

Nên sđ  AnB+sđ  AnB>sđ  AnB+sđ  AmB=360°.

Suy ra 2  .  sđ  AnB>360°  hay sđ  AnB>180° .

Vậy số đo cung lớn luôn lớn hơn 180°.

Luyện tập 2 trang 90 Toán 9 Tập 1: Cho điểm C nằm trên đường tròn (O). Đường trung trực của đoạn OC cắt (O) tại A. Tính số đo của các cung ACB  và ABC.

Lời giải:

Luyện tập 2 trang 90 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

Vì AB là đường trung trực của AB của OC nên AC = OA (tính chất đường trung trực).

Mà OA = OC = R nên AC = OA = OC.

Nên ΔACO là tam giác đều.

Do đó: ACO^=60°  (tính chất của tam giác đều)

Suy ra sđ  AC=60° .

Tương tự ta có: sđ  BC=60° .

Suy ra: sđ  ACB=sđ  AC+sđ  BC=60°+60°=120°.

Ta có ABC  là cung lớn có chung hai mút A, C với cung nhỏ AC.

Do đó sđ  ABC=360°sđ  AC=360°60°=300°.

Vậy sđ  ACB=120°  và sđ  ABC=300°.

Bài tập

Bài 5.5 trang 90 Toán 9 Tập 1: >Cho nửa đường tròn đường kính AB và một điểm M tùy ý thuộc nửa đường tròn đó. Chứng minh rằng khoảng cách từ M đến AB không lớn hơn AB2.

Lời giải:

Bài 5.5 trang 90 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

Gọi H là hình chiếu của M trên AB.

Khi đó khoảng cách từ M đến AB bằng độ dài đoạn MH.

Xét tam giác MHO vuông tại H có: MH ≤ MO.

Lại có OM=AB2  (do AB là đường kính, OM là bán kính của đường tròn (O)).

Vậy MHAB2.

Bài 5.6 trang 90 Toán 9 Tập 1: Cho đường tròn (O; 5 cm) và AB là một dây bất kì của đường tròn đó. Biết AB = 6 cm.

a) Tính khoảng cách từ O đến đường thẳng AB.

b) Tính tan α nếu góc ở tâm chắn cung AB bằng 2α.

Lời giải:

Bài 5.6 trang 90 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

a) Gọi H là trung điểm của AB.

Suy ra AH=AB2=62=3  (cm).

Xét ∆OAH và ∆OBH có:

OA = OB = R

Cạnh OH chung

HA = HB (do H là trung điểm của AB)

Do đó ∆OAH = ∆OBH (c.c.c).

Suy ra OHA^=OHB^  (hai góc tương ứng)

 OHA^  và OHB^  là hai góc bù nhau nên OHA^+OHB^=180°  hay 2OHB^=180°

Suy ra OHA^=OHB^=90°  nên OH ⊥ AB.

Do đó khoảng cách từ O đến đường thẳng AB bằng độ dài đoạn OH.

Xét tam giác OAH vuông tại H có:

AH2 + OH2 = OA2 (định lý Pythagore)

Hay OH2 = OA2 − AH2 = 52 − 32 = 16.

Nên OH = 4 cm.

Vậy khoảng cách từ O đến đường thẳng AB bằng 4 cm.

b) Theo giả thiết, góc ở tâm chắn cung AB là AOB^=2α .

Từ câu a) ∆OAH = ∆OBH suy ra HOA^=HOB^  (hai góc tương ứng).

Lại có: HOA^+HOB^=AOB^  nên 2HOA^=2α  hay HOA^=α.

Suy ra tanα=AHOH=34.

Bài 5.7 trang 90 Toán 9 Tập 1: Tâm O của một đường tròn cách dây AB của nó một khoảng 3 cm. Tính bán kính của đường tròn (O), biết rằng dây cung nhỏ AB có số đo bằng 100° (làm tròn kết quả đến hàng phần mười).

Lời giải:

Bài 5.7 trang 90 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

Gọi H là trung điểm của AB.

Theo giả thiết, góc ở tâm chắn cung AB là AOB^=100° .

Xét ∆OAH và ∆OBH có:

OA = OB = R

Cạnh OH chung

HA = HB (do H là trung điểm của AB)

Do đó ∆OAH = ∆OBH (c.c.c).

Suy ra HOA^=HOB^  (hai góc tương ứng).

Lại có: HOA^+HOB^=AOB^  nên 2HOA^=AOB^=100°  hay HOA^=50°.

Xét tam giác OAH vuông tại H có: cosHOA^=OHOA .

Suy ra OA=OHcosHOA^=3cos50°4,7  (cm).

Vậy bán kính của đường tròn (O) khoảng 4,7 cm.

Bài 5.8 trang 90 Toán 9 Tập 1: Trên mặt một chiếc đồng hồ có các vạch chia như Hình 5.12. Hỏi cứ sau mỗi khoảng thời gian 36 phút:

Bài 5.8 trang 90 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

a) Đầu kim phút vạch trên một cung có số đo bằng bao nhiêu độ?

b) Đầu kim giờ vạch trên một cung có số đo bằng bao nhiêu độ?

Lời giải:

a) Cứ 60 phút kim phút chạy hết 1 vòng đồng hồ, tức là vạch trên 1 cung có số đo bằng

360°.

Mỗi phút kim phút vạch trên một cung có số đo là: 360°60=6°.

Như vậy sau 36 phút, kim phút vạch trên 1 cung có số đo bằng:

 . 36 = 216°.

b) Sau 1 giờ, kim giờ vạch trên 1 cung có số đo bằng: 360°12=30°.

Mỗi phút kim giờ vạch trên một cung có số đo là: 30°60=0,5°.

Như vậy sau 36 phút, kim giờ vạch trên 1 cung có số đo bằng:

0,5° . 36 = 18°.

Xem thêm các bài giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Bài 13. Mở đầu về đường tròn

Bài 14. Cung và dây của một đường tròn

Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên

Luyện tập chung trang 96

Bài 16. Vị trí tương đối của đường thẳng và đường tròn

Bài 17. Vị trí tương đối của hai đường tròn

Lý thuyết Cung và dây của một đường tròn

1. Dây và đường kính của đường tròn

Khái niệm dây

Đoạn thẳng nối hai điểm tùy ý của một đường tròn gọi là một dây (hay dây cung) của đường tròn.

Khái niệm đường kính của đường tròn

Mỗi dây đi qua tâm là một đường kính của đường tròn.

Đường kính của đường tròn bán kính R là 2R.

Ví dụ:

Lý thuyết Cung và dây của một đường tròn (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 1)

Trong hình trên, CD là một dây, AB là một đường kính của (O).

Quan hệ giữa dây và đường kính

Trong một đường tròn, đường kính là dây cung lớn nhất.

2. Góc ở tâm, cung và số đo của một cung

Khái niệm góc ở tâm và cung tròn

Góc ở tâm là góc có đỉnh trùng với tâm của đường tròn.

Lý thuyết Cung và dây của một đường tròn (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 2)

- Nếu 00<α<1800 thì cung nằm bên trong góc được gọi là cung nhỏ, cung nằm bên ngoài góc được gọi là cung lớn.

- Nếu α=1800 thì mỗi cung là một nửa đường tròn.

- Cung nằm bên trong gọi là cung bị chắn. Góc bẹt chắn nửa đường tròn.

Ví dụ:

Lý thuyết Cung và dây của một đường tròn (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 3)

Trong hình trên, AmO là cung nhỏ, ta có thể kí hiệu gọn là AB.

AnB là cung lớn.

Ta nói góc AOB chắn cung AB hay cung AB bị chắn bởi góc AOB.

Cách xác định số đo một cung

Số đo của một cung được xác định như sau:

- Số đo của nửa đường tròn bằng 1800.

- Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.

- Số đo cung lớn bằng hiệu giữa 3600 và số đo của cung nhỏ có chung hai mút.

Ví dụ: Số đo của cung AB được kí hiệu là sđAB.

Lý thuyết Cung và dây của một đường tròn (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 4)

AmB=AOB^=α; sđAnB=3600α.

Chú ý:

- Cung có số đo n0 còn được gọi là cung n0. Cả đường tròn được coi là cung 3600. Đôi khi ta cũng coi một điểm là cung 00.

- Hai cung trên một đường tròn gọi là bằng nhau nếu chúng có cùng số đo.

Đánh giá

0

0 đánh giá