Cho đường tròn (O) và hai tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại điểm A

122

Với giải Khám phá 3 trang 87 Toán 9 Tập 1 Chân trời sáng tạo chi tiết trong Bài 2: Tiếp tuyến của đường tròn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 2: Tiếp tuyến của đường tròn

Khám phá 3 trang 87 Toán 9 Tập 1: Cho đường tròn (O) và hai tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại điểm A (Hình 10).

Khám phá 3 trang 87 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

a) Chứng minh hai tam giác ABO và ACO bằng nhau.

b) Tìm các đoạn thẳng bằng nhau và các góc bằng nhau trong Hình 10.

Lời giải:

a) Vì AB, AC lần lượt là tiếp tuyến của đường tròn (O) tại B, C nên AB ⊥ OB và AC ⊥ OC.

Xét ∆ABO và ∆ACO có:

ABO^=ACO^=90°;

OB = OC (cùng là bán kính của đường tròn (O));

OA là cạnh chung.

Do đó ∆ABO = ∆ACO (cạnh huyền – cạnh góc vuông).

b) Theo câu a, ∆ABO = ∆ACO, suy ra:

⦁ OB = OC; AB = AC (hai cạnh tương ứng);

 ABO^=ACO^=90°; BAO^=CAO^;  BOA^=COA^ (các cặp góc tương ứng).

Lý Thuyết Tính chất của hai tiếp tuyến cắt nhau

Định lí

Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì:

- Điểm đó cách đều hai tiếp điểm.

- Tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến.

- Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm.

Lý thuyết Tiếp tuyến của đường tròn (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 4)

Ví dụ: Cho đường tròn (O), B, C  (O). Tiếp tuyến của (O) tại B và C cắt nhau tại A.

Lý thuyết Tiếp tuyến của đường tròn (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 5)

Khi đó:

- AB = AC

- Tia AO là tia phân giác của BAC^.

- Tia OA là tia phân giác của BOC^.

Đánh giá

0

0 đánh giá