Giải SGK Toán 9 Bài 4 (Chân trời sáng tạo): Hình quạt tròn và hình vành khuyên

0.9 K

Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 9 Bài 4: Hình quạt tròn và hình vành khuyên chi tiết sách Toán 9 Tập 1 Chân trời sáng tạo giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 4: Hình quạt tròn và hình vành khuyên

Khởi động trang 98 Toán 9 Tập 1: Số lượng cây ăn trái của trang trại Đất Lành được cho trong bảng sau:

Khởi động trang 98 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Số liệu trên được biểu diễn trong biểu đồ hình quạt tròn bên.

Hình các phần được chia từ hình tròn trong biểu đồ bên gọi là gì? Làm thế nào để vẽ được chúng?

Lời giải:

Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:

Hình các phần được chia từ hình tròn trong biểu đồ gọi là hình quạt tròn.

Để vẽ được hình quạt tròn, ta vẽ một đường tròn và chia đường tròn đã vẽ thành các cung, tô màu phần bên trong các cung ta được các hình quạt tròn.

1. Độ dài cung tròn

Khám phá 1 trang 98 Toán 9 Tập 1: Một hàng rào bao quanh một sân cỏ hình tròn có bán kính 10 m (Hình 1) được ghép bởi 360 phần bằng nhau. Hãy tính:

a) Độ dài của toàn bộ hàng rào.

b) Độ dài của mỗi phần hàng rào.

c) Độ dài của n phần hàng rào.

Khám phá 1 trang 98 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

a) Độ dài củ toàn bộ hàng rào (chu vi của đường tròn) là: 2π.10 = 20π (m).

b) Độ dài của mỗi phần hàng rào là: 20π360=π18 (m).

c) Độ dài của n phần hàng rào là: nπ18 (m).

Thực hành 1 trang 99 Toán 9 Tập 1: Tính độ dài cung 72° của một đường tròn có bán kính 25 cm.

Lời giải:

Cung 72°, bán kính 25 cm có độ dài là:

l=πRn180=π2572180=10π31,42(cm).

Vận dụng 1 trang 99 Toán 9 Tập 1: Tính độ dài của đoạn hàng rào từ A đến B của sân cỏ trong Hình 3, cho biết AOB^=80°.

Vận dụng 1 trang 99 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

Xét đường tròn (O), có sđAB=AOB^=80°.

Cung AB có số đo 80°, bán kính 10 m có độ dài là:

l=πRn180=π1080180=409π13,96(cm).

Vậy độ dài của đoạn hàng rào từ A đến B của sân cỏ trong Hình 3 khoảng 13,96 m.

2. Hình quạt tròn

Khám phá 2 trang 99 Toán 9 Tập 1a) Ta có thể tính diện tích của miếng bánh pizza trong Hình 4a theo góc ở tâm và bán kính của ổ bánh hay không?

b) Chia một hình tròn bán kính R thành 360 phần bằng nhau.

i) Tính diện tích của mỗi phần đó.

ii) Tính diện tích phần hình tròn ghép bởi n phần bằng nhau nói trên (Hình 4b).

Khám phá 2 trang 99 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

a) Ta có thể tính diện tích của miếng bánh pizza trong Hình 4a theo góc ở tâm và bán kính của ổ bánh.

b) Một hình tròn bán kính R có diện tích là: πR2 (đơn vị diện tích).

i) Chia hình tròn thành 360 phần bằng nhau thì diện tích mỗi phần là: πR2360 (đơn vị diện tích).

ii) Diện tích phần hình tròn ghép bởi n phần bằng nhau là: nπR2360 (đơn vị diện tích).

Thực hành 2 trang 100 Toán 9 Tập 1: Tính diện tích hình quạt tròn bán kính R = 20 cm, ứng với cung 72°.

Lời giải:

Hình quạt tròn bán kính R = 20 cm, ứng với cung 72° có diện tích là:

S=πR2n360=π20272360=80π251,33(cm2).

Vận dụng 2 trang 100 Toán 9 Tập 1: Tính diện tích của miếng bánh pizza có dạng hình quạt tròn trong Hình 8. Biết OA = 15 cm và AOB^=55°

Vận dụng 2 trang 100 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

Ta có sđAB=AOB^=55°.

Diện tích hình quạt tròn OAB bán kính 15 cm, ứng với cung 55° là:

S=πR2n360=π15255360=2758π108,00(cm2).

3. Hình vành khuyên

Khám phá 3 trang 101 Toán 9 Tập 1a) Vẽ đường tròn (C) tâm O bán kính r = 5 cm và đường tròn (C’) tâm O bán kính R = 8 cm.

b) Tính diện tích S của (C) và diện tích S’ của (C’).

c) Hãy cho biết hiệu số (S’ – S) biểu diễn diện tích của phần nào trên Hình 9.

Khám phá 3 trang 101 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

a)

Khám phá 3 trang 101 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

b) Diện tích S của đường tròn (C) là: S = π.52 = 25π (cm2).

Diện tích S’ của đường tròn (C’) là: S’ = π.82 = 64π (cm2).

c) Hiệu số (S’ – S) biểu diễn diện tích phần giới hạn bởi hai đường tròn (C) và (C’).

Thực hành 3 trang 101 Toán 9 Tập 1: Tính diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 10 cm) và (O; 20 cm) (kết quả làm tròn đến hàng phần trăm).

Lời giải:

Diện tích hình vành khuyên giới hạn bởi đường tròn (O; 10 cm) và (O; 20 cm) là:

S = π(R2 – r2) = π(202 – 102) = 300π ≈ 942,48 (cm2).

Vận dụng 3 trang 101 Toán 9 Tập 1: Cho hình vành khuyên giới hạn bởi hai đường tròn (O; r) và (O; R) với R > r. Trên đường tròn (O; R) lấy hai điểm B, C sao cho BC vừa là dây cung của (O; R), vừa là tiếp tuyến của đường tròn (O; r) tại A (Hình 11).

a) Tính độ dài đoạn thẳng BC theo r và R.

b) Cho BC=a3. Tính diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; r) và (O; R) theo a.

Vận dụng 3 trang 101 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

a) Vì BC là tiếp tuyến của đường tròn (O; r) tại A nên BC ⊥ OA.

Xét ∆OBC có OB = OC nên ∆OBC cân tại O. Do đó đường cao OA đồng thời là đường trung tuyến của tam giác.

Suy ra A là trung điểm của BC nên BC = 2AB.

Xét ∆OAB vuông tại A, theo định lí Pythagore, ta có: OB2 = OA+ AB2.

Suy ra AB2 = OB2 – OA2 = R2 – r2.

Do đó AB=R2r2.

Khi đó BC=2R2r2.

b) Theo bài, BC=a3, do đó 2R2r2=a3

Suy ra R2r2=a32 nên R2r2=a322=3a24.

Diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; r) và (O; R) là:

S=πR2r2=π3a24=3π4a2.

Bài tập

Bài 1 trang 102 Toán 9 Tập 1: Tính độ dài các cung 30°; 90°; 120° của đường tròn (O; 6 cm).

Lời giải:

Xét đường tròn (O; 6 cm):

⦁ Cung 30°, bán kính 6 cm có độ dài là:

l=πRn180=π630180=π3,14(cm).

⦁ Cung 90°, bán kính 6 cm có độ dài là:

l=πRn180=π690180=3π9,42(cm).

⦁ Cung 120°, bán kính 6 cm có độ dài là:

l=πRn180=π6120180=4π12,57(cm).

Bài 2 trang 102 Toán 9 Tập 1: Tính diện tích các hình quạt tròn ứng với cung có số đo lần lượt là 30°; 90°; 120° của hình tròn (O; 12 cm).

Lời giải:

Xét hình tròn (O; 12 cm):

⦁ Hình quạt tròn bán kính R = 12 cm, ứng với cung 30° có diện tích là:

S=πR2n360=π12230360=12π37,70(cm2).

⦁ Hình quạt tròn bán kính R = 12 cm, ứng với cung 90° có diện tích là:

S=πR2n360=π12290360=36π113,10(cm2).

⦁ Hình quạt tròn bán kính R = 12 cm, ứng với cung 120° có diện tích là:

S=πR2n360=π122120360=48π150,80(cm2).

Bài 3 trang 102 Toán 9 Tập 1: Tính diện tích các hình quạt tròn ứng với cung có độ dài lần lượt là 8 cm, 15 cm của hình tròn (O; 5 cm).

Lời giải:

Diện tích của hình quạt tròn bán kính R (cm), ứng với cung n° là:

S=πR2n360=πRn180R2=lR2(cm2).

Xét hình tròn (O; 5 cm):

⦁ Nếu cung có độ dài 8 cm thì diện tích hình quạt tròn tương ứng là:

S=lR2=852=20(cm2).

⦁ Nếu cung có độ dài 15 cm thì diện tích hình quạt tròn tương ứng là:

S=lR2=1552=37,5(cm2).

Bài 4 trang 102 Toán 9 Tập 1: Tính diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 9 cm) và (O; 12 cm).

Lời giải:

Diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 9 cm) và (O; 12 cm) là:

S = π(R2 – r2) = π(122 – 92) = 63π ≈ 197,92 (cm2).

Bài 5 trang 102 Toán 9 Tập 1: Tính diện tích hình viên phân giới hạn bởi dây cung có độ dài là 55 cm và cung có số đo là 95° (Hình 12).

Bài 5 trang 102 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

Gọi các điểm như hình vẽ. Kẻ OH ⊥ AB.

Bài 5 trang 102 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Xét ∆OAB có OA = OB nên ∆OAB cân tại O. Do đó đường cao OH đồng thời là đường phân giác và đường trung tuyến của tam giác.

Khi đó AOH^=12AOB^=1295°=47,5° và H là trung điểm của AB hay AH=AB2=552=27,5(cm).

Xét ∆OAH vuông tại H, ta có:

⦁ AH=OAcosAOH^. Suy ra OA=AHcosAOH^=27,5cos47,5°40,71(cm).

⦁ OH=AHcotAOH^=27,5cot47,525,20(cm).

Diện tích tam giác OAB là: S1=12OHAB1225,2055=693(cm2).

Diện tích hình quạt tròn OAB là:

S2=πOA2n360π40,712953601373,96(cm2).

Diện tích hình viên phân cần tìm là:

S=S2S11373,96693=680,96(cm2).

Bài 6 trang 102 Toán 9 Tập 1: Một máy kéo nông nghiệp có đường kính bánh xe sau là 124 cm và đường kính bánh xe trước là 80 cm. Hỏi khi bánh xe sau lăn được 20 vòng thì bánh xe trước lăn được bao nhiêu vòng?

Bài 6 trang 102 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

Chu vi của bánh xe sau là: 2πR = dπ = 124π (cm).

Quãng đường mà bánh xe sau lăn được 20 vòng là: 124π.20 = 2 480π (cm).

Chu vi của bánh xe trước là: 2πR’ = d’π = 80π (cm).

Khi đó, số vòng mà bánh xe trước lăn được là: 2480π80π=31 (vòng).

Bài 7 trang 102 Toán 9 Tập 1: Thành phố Đà Lạt nằm vào khoảng 11°58’ vĩ độ Bắc. Mỗi vòng kinh tuyến của Trái Đất dài khoảng 40 000 km. Hãy tính độ dài cung kinh tuyến từ Đà Lạt đến xích đạo.

(Nguồn: https://vi.wikipedia.org/wiki/Đà-Lạt.)

Bài 7 trang 102 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

Mỗi vòng kinh tuyến của Trái Đất dài khoảng 40 000 km nên bán kính của Trái Đất là khoảng: R=400002π=20000π(km).

Thành phố Đà Lạt nằm vào khoảng 11°58’ vĩ độ Bắc nên cung kinh tuyến từ Đà Lạt đến xích đạo có số đo là 11°58'=115860°.

Vậy độ dài cung kinh tuyến từ Đà Lạt đến xích đạo là:

l=πRn180=π20000π115860180=35900271329,63(km).

Xem thêm các bài giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Bài 3. Góc ở tâm, góc nội tiếp

Bài 4. Hình quạt tròn và hình vành khuyên

Bài tập cuối chương 5

Hoạt động 1. Làm giác kế đo góc nâng đơn giản

Hoạt động 2. Vẽ đường tròn bằng phần mềm GeoGebra

Bài 1. Hàm số và đồ thị của hàm số y = ax2 (a ≠ 0)

Lý thuyết Hình quạt tròn và hình vành khuyên

1. Độ dài cung tròn

Công thức tính chu vi đường tròn

Công thức tính độ dài C của đường tròn (O; R), đường kính d = 2R là:

C=πd=2πR

Công thức tính độ dài cung tròn

Lý thuyết Hình quạt tròn và hình vành khuyên (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 1) 

Trên đường tròn bán kính R, độ dài l của một cung có số đo n0 được tính theo công thức:

l=πRn180.

Ví dụ:

Lý thuyết Hình quạt tròn và hình vành khuyên (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 2)

Đường tròn (O; 2cm), AOB^=600.

- Cung nhỏ AB bị chắn bởi góc ở tâm AOB.

Do đó sđAB=AOB^=600

Độ dài l1 của cung AB là:

l1=n180πR=60180π.2=2π32,1(cm)

Cung lớn AnB có số đo là:

AmN=360o600=3000.

Độ dài l2 của cung AnB là:

l2=300180π.2=103π10,5(cm)

2. Hình quạt tròn

Khái niệm hình quạt tròn

Lý thuyết Hình quạt tròn và hình vành khuyên (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 3)

Hình quạt tròn là một phần hình tròn giới hạn bởi một cung tròn và hai bán kính đi qua hai mút của cung đó.

Diện tích hình quạt tròn

Diện tích hình quạt tròn bán kính R ứng với cung no:

S=πR2n360

Ví dụ: Diện tích hình quạt tròn có độ dài tương ứng với nó là l=4πcm, bán kính là R = 5cm là:

Sq=l.R2=4π.52=10π(cm2)

3. Hình vành khuyên

Khái niệm hình vành khuyên

Lý thuyết Hình quạt tròn và hình vành khuyên (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 4)

Cho hai đường tròn đồng tâm (O;R) và (O;r) với R>r.

Hình vành khuyên là phần mặt phẳng giới hạn bởi hai đường tròn (O;r) và (O;R) được tính bởi công thức: S=π(R2r2).

Diện tích hình vành khuyên

Diện tích Sv của hình vành khuyên tạo bởi hai đường tròn đồng tâm và có bán kính R và r:

Sv=π(R2r2) (với R > r)

Ví dụ:  Diện tích hình vành khuyên nằm giữa hai đường tròn đồng tâm có bán kính là 3m và 5m là:

Sv=π(5232)=16π(m2)

Đánh giá

0

0 đánh giá