Cho góc AIB nội tiếp đường tròn tâm O đường kính IK sao cho tâm O nằm trong góc

138

Với giải Hoạt động 4 trang 115 Toán 9 Tập 1 Cánh diều chi tiết trong Bài 4: Góc ở tâm. Góc nội tiếp giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 4: Góc ở tâm. Góc nội tiếp

Hoạt động 4 trang 115 Toán 9 Tập 1: Cho góc AIB nội tiếp đường tròn tâm O đường kính IK sao cho tâm O nằm trong góc đó (Hình 57).

Hoạt động 4 trang 115 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a) Các cặp góc OAI^ và OIA^OBI^ và OIB^ có bằng nhau hay không?

b) Tính các tổng AOI^+2OIA^,BOI^+2OIB^.

c) Tính các tổng AOI^+AOK^,BOI^+BOK^.

d) So sánh AOK^ và 2OIA^ , BOK^ và 2OIB^,AOB^ và 2AIB^ .

Lời giải:

a) Xét ∆OAI có OA = OI nên ∆OAI cân tại O, suy ra OAI^=OIA^.

Xét ∆OBI có OB = OI nên ∆OBI cân tại O, suy ra OBI^=OIB^.

b) Xét ∆OAI có AOI^+OIA^+OAI^=180° (định lí tổng các góc của một tam giác).

Do đó AOI^+2OIA^=180°.

Xét ∆OBI có BOI^+OIB^+OBI^=180° (định lí tổng các góc của một tam giác).

Do đó BOI^+2OIB^=180°.

c) AOI^+AOK^=180°,BOI^+BOK^=180° (các cặp góc kề bù).

d) Ta có AOI^+2OIA^=180° (theo câu b) và AOI^+AOK^=180° (theo câu c)

Suy ra AOK^=2OIA^.

Ta có BOI^+2OIB^=180° (theo câu b) và BOI^+BOK^=180° (theo câu c)

Suy ra BOK^=2OIB^.

Ta có: AOK^=2OIA^ và BOK^=2OIB^

Suy ra AOK^+BOK^=2OIA^+2OIB^=2OIA^+OIB^

Do đó AOB^=2AIB^.

Lý thuyết Góc nội tiếp

Định nghĩa

Góc nội tiếp là góc có đỉnh thuộc đường tròn và hai cạnh chứa hai dây cung của đường tròn đó.

Cung nằm bên trong của góc được gọi là cung bị chắn.

Định lí

Một góc ở tâm có số đo gấp hai lần số đo góc nội tiếp cùng chắn một cung.

Số đo góc nội tiếp

Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn.

Góc nội tiếp chắn nửa cung tròn có số đo bằng 900.

Ví dụ:

Lý thuyết Góc ở tâm. Góc nội tiếp (Cánh diều 2024) | Lý thuyết Toán 9 (ảnh 5)

AMB^ là góc nội tiếp chắn AB trên đường tròn (O) nên AMB^=12AB.

Nhận xét: Trong một đường tròn, hai góc nội tiếp cùng chắn một cung thì bằng nhau.

Đánh giá

0

0 đánh giá