Quan sát góc ở tâm AOB (khác góc bẹt) ở Hình 48, cho biết trong hai phần đường tròn

87

Với giải Hoạt động 2 trang 112 Toán 9 Tập 1 Cánh diều chi tiết trong Bài 4: Góc ở tâm. Góc nội tiếp giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 4: Góc ở tâm. Góc nội tiếp

Hoạt động 2 trang 112 Toán 9 Tập 1: Quan sát góc ở tâm AOB (khác góc bẹt) ở Hình 48, cho biết trong hai phần đường tròn được tô màu xanh và màu đỏ, phần nào nằm bên trong, phần nào nằm bên ngoài góc AOB.

Hoạt động 2 trang 112 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Phần đường tròn được tô màu xanh nằm bên trong góc AOB.

Phần đường tròn được tô màu đỏ nằm bên ngoài góc AOB.

Lý thuyết Cung, số đo cung

Cung

Phần đường tròn nối liền hai điểm A, B trên đường tròn được gọi là một cung (hay cung tròn) AB, kí hiệu là AB.

Lý thuyết Góc ở tâm. Góc nội tiếp (Cánh diều 2024) | Lý thuyết Toán 9 (ảnh 2)

Góc ở tâm AOB^ chắn cung AnB hay cung AnB bị chắn bởi góc ở tâm AOB^.

AnB là cung nhỏ và AmB là cung lớn.

Số đo cung

- Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.

- Số đo của cung lớn bằng: 3600 - số đo cung nhỏ (có chung đầu mút với cung lớn).

- Số đo của cung nửa đường tròn bằng 1800.

- Số đo của cung AB được kí hiệu là sđAB.

Quy ước: Khi hai mút của cung trùng nhau, ta có “cung không” với số đo 00 và cung cả đường tròn có số đo 3600.

Nhận xét: Góc ở tâm chắn một cung mà cung đó là nửa đường tròn thì có số đo bằng 1800.

Nếu điểm C là một điểm nằm trên cung AB thì sđACB = sđAC + sđCB.

Chú ý:

- Khác với so sánh hai góc, ta chỉ so sánh hai cung trong một đường tròn hay trong hai đường tròn bằng nhau. Cụ thể:

+ Hai cung được gọi là bằng nhau nếu chúng có số đo bằng nhau;

+ Trong hai cung, cung nào có số đo lớn hơn được gọi là cung lớn hơn.

Hai cung AB và CD bằng nhau được kí hiệu là AB=CD.

Cung EG nhỏ hơn cung HK được kí hiệu là EG<HK. Trong trường hợp này, ta cũng nói cung HK lớn hơn cung EG và kí hiệu là HK>EG.

- Cho điểm A thuộc đường tròn (O) và số thực α với 0<α<360. Sử dụng thược thẳng và thước đo độ, ta vẽ điểm B thuộc đường tròn (O) như sau:

+ Nếu 0<α180 thì ta vẽ theo chiểu quay của kim đồng hồ góc ở tâm AOB có số đo bằng α0. Khi đó sđAmB=α0

Lý thuyết Góc ở tâm. Góc nội tiếp (Cánh diều 2024) | Lý thuyết Toán 9 (ảnh 3)

+ Nếu 180<α360 thì ta vẽ theo ngược chiểu quay của kim đồng hồ góc ở tâm AOB có số đo bằng α01800. Khi đó sđAnB=α0.

Lý thuyết Góc ở tâm. Góc nội tiếp (Cánh diều 2024) | Lý thuyết Toán 9 (ảnh 4)

Đánh giá

0

0 đánh giá