Tính độ dài cạnh góc vuông x của mỗi tam giác vuông trong Hình 3 (kết quả làm tròn đến hàng phần trăm)

527

Với giải Thực hành 2 trang 68 Toán 9 Tập 1 Chân trời sáng tạo chi tiết trong Bài 2: Hệ thức giữa cạnh và góc của tam giác vuông giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 2: Hệ thức giữa cạnh và góc của tam giác vuông

Thực hành 2 trang 68 Toán 9 Tập 1: Tính độ dài cạnh góc vuông x của mỗi tam giác vuông trong Hình 3 (kết quả làm tròn đến hàng phần trăm).

Thực hành 2 trang 68 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

a) Hình 3a: Xét tam giác ABC vuông tại A,B^=32° , ta có:

x = AB = AC . cot B = 9 . cot 32° ≈ 14,40.

Vậy x ≈ 14,40.

b) Hình 3b: Xét tam giác DEF vuông tại F, E^=48° , ta có:

x = DF = EF . tan E = 5 . tan 48° ≈ 5,55.

Vậy x ≈ 5,55.

Lý Thuyết Hệ thức giữa cạnh và góc của tam giác vuông

Công thức tính cạnh góc vuông theo cạnh huyền và sin, côsin của các góc nhọn

Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề.

Cạnh góc vuông = (cạnh huyền ) × (sin góc đối)

= (cạnh huyền ) × (cosin góc kề)

Ví dụ 1:

Lý thuyết Hệ thức giữa cạnh và góc của tam giác vuông (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 1)

Trong tam giác ABC vuông tại A, ta có:

b=a.sinB=a.cosC;c=a.sinC=a.cosB.

Công thức tính cạnh góc vuông theo cạnh góc vuông kia và tang, côtang của các góc nhọn

Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh góc vuông kia nhân với tang góc đối hoặc côtang góc kề.

Cạnh góc vuông = (cạnh góc vuông còn lại ) × (tan góc đối) 

= (cạnh góc vuông còn lại ) × (cot góc kề)

Ví dụ 2:

Lý thuyết Hệ thức giữa cạnh và góc của tam giác vuông (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 2)

Trong tam giác ABC vuông tại A, ta có:

b=c.tanB=c.cotC;c=b.tanC=b.cotB.

Đánh giá

0

0 đánh giá