Giải các phương trình lượng giác sau: b) 2cos^2x + 5sinx ‒ 4 = 0

1.8 K

Với giải Bài 3 trang 31 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 5: Phương trình lượng giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 5: Phương trình lượng giác

Bài 3 trang 31 SBT Toán 11 Tập 1: Giải các phương trình lượng giác sau:

a) cosx+π4+cosπ4x=0;

b) 2cos2x + 5sinx ‒ 4 = 0;

c) cos3xπ4+2sin2x1=0.

Lời giải:

a) cosx+π4+cosπ4x=0

cosx+π4=cosπ4xcosx+π4=cos3π4+x

x+π4=3π4+x+k2π,k hoặc x+π4=3π4x+k2π,k

x=π2+kπ,k

Vậy phương trình có các nghiệm là x=π2+kπ,k

b) 2cos2x + 5sinx ‒ 4 = 0

⇔ 2(1 ‒ sin2x) + 5sinx ‒ 4 = 0

⇔ ‒2sin2x + 5sinx ‒ 2 = 0

⇔ sinx = 2 (vô nghiệm) hoặc sinx = 12

⇔ sinx = 12 x=π6+k2π,k hoặc x=ππ6+k2π,k

x=π6+k2π,k hoặc x=5π6+k2π,k

Vậy phương trình có các nghiệm x=π6+k2π,k  x=5π6+k2π,k

c) cos3xπ4+2sin2x1=0

cos3xπ4=12sin2xcos3xπ4=cos2x

3xπ4=2x+k2π,k hoặc 3xπ4=2x+k2π,k

x=π4+k2π,k hoặc x=π20+k2π5,k

Vậy phương trình có các nghiệm là x=π4+k2π,k và x=π20+k2π5,k

Đánh giá

0

0 đánh giá