Giải các phương trình lượng giác sau: a) cos(2x + 10°) = sin(50° ‒ x

1.2 K

Với giải Bài 2 trang 31 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 5: Phương trình lượng giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 5: Phương trình lượng giác

Bài 2 trang 31 SBT Toán 11 Tập 1: Giải các phương trình lượng giác sau:

a) cos(2x + 10°) = sin(50° ‒ x);

b) 8sin3x + 1 = 0;

c) (sinx + 3)(cotx ‒ 1) = 0;

d) tan(x ‒ 30°) ‒ cot50° = 0.

Lời giải:

a) cos(2x + 10°) = sin(50° ‒ x)

 cos(2x + 10°) = cos(x + 40°)

 2x + 10° = x + 40°+ k360°, k  ℤ hoặc 2x + 10° = ‒x ‒ 40°+ k360°, k  ℤ

 x = 30° + k360°, k  ℤ hoặc x=13.50+k120,k.

Vậy phương trình có các nghiệm là x = 30° + k360°, k  ℤvà x=1350+k120,k.

b) 8sin3x + 1 = 0

sin3x=18sinx=12

x=π6+k2π,k hoặc x=ππ6+k2π,k

x=π6+k2π,k hoặc x=7π6+k2π,k

Vậy phương trình có các nghiệm là x=π6+k2π,k  x=7π6+k2π,k.

c) (sinx + 3)(cotx ‒ 1) = 0

 sinx + 3 = 0 hoặc cotx ‒ 1 = 0

 sinx = ‒3 hoặc cotx = 1

Phương trình sinx = ‒3 vô nghiệm.

Phương trình cotx = 1 có nghiệm là x=π4+kπ,k.

Vậy phương trình có các nghiệm là x=π4+kπ,k.

d) tan(x ‒ 30°) ‒ cot50° = 0

 tan(x ‒ 30°) = cot50°

 tan(x ‒ 30°) = tan40°

 x ‒ 30° = 40° + k180°, k  ℤ

 x = 70° + k180°, k  ℤ

Vậy phương trình có các nghiệm là x = 70° + k180°, k  ℤ.

Đánh giá

0

0 đánh giá