Với giải sách bài tập Toán 11 Bài 2: Cấp số cộng sách Chân trời sáng tạo hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán 11 Bài 2: Cấp số cộng
a) un = 2n + 3;
b) un = ‒3n + 1;
c) un = n2 + 1;
d)
Lời giải:
a) Ta có: u1 = 2.1 + 3 = 5; un = 2n + 3 và un+1 = 2(n + 1) +3 = 2n + 5
Do đó un+1 – un = 2n + 5 – (2n + 3) = 2.
Vậy un = 2n + 3 là cấp số cộng với số hạng đầu u1 = 5 và công sai d = 2.
b) Ta có: u1 = ‒3.1 + 1 = −2; un = ‒3n + 1 và un+1 = ‒3(n + 1) + 1 = ‒3n – 2.
Do đó un+1 – un = ‒3n – 2 – (‒3n + 1) = – 3.
Vậy un = ‒3n + 1 là cấp số cộng với số hạng đầu u1 = −2 và công sai d = ‒3.
c) Xét un = n2 + 1 có:
u1 = 12 + 1 = 2;
u2 = 22 + 1 = 5;
u3 = 32 + 1 = 10
Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2
Vậy un = n2 + 1 không phải là cấp số cộng.
d) Xét có:
Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2
Vậy không phải là cấp số cộng
a) un = 3n + 1;
b) un = 4 ‒ 5n;
c)
d)
e)
g) un = n2 + 1.
Lời giải:
a) Ta có: u1 = 3.1 + 1 = 4; un = 3n + 1; và un+1 = 3(n + 1) + 1 = 3n + 4.
Do đó un+1 – un = 3n + 4 – (3n + 1) = 3.
Vậy un = 3n + 1 là cấp số cộng với số hạng đầu u1 = 4 và công sai d = 3.
b) Ta có: u1 = 4 ‒ 5.1 = ‒1; un = 4 ‒ 5n và un+1 = 4 – 5(n + 1) = −1 – 5n.
Do đó un+1 – un = −1 – 5n – (4 ‒ 5n) = −5.
Vậy un = 4 ‒ 5n là cấp số cộng với số hạng đầu u1 = ‒1 và công sai d = ‒5.
c) Ta có và
Do đó
Vậy là cấp số cộng với số hạng đầu u1 = 1 và công sai
d) Xét có:
Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2
Vậy không phải là cấp số cộng.
e) Xét có:
Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2
Vậy không phải là cấp số cộng.
g) Xét un = n2 + 1 có u1 = 12 + 1 = 2; u2 = 22 + 1 = 5; u3 = 32 + 1 = 10.
Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2
Vậy un = n2 + 1 không phải là cấp số cộng.
Bài 3 trang 60 SBT Toán 11 Tập 1: Cho cấp số cộng (un) có số hạng tổng quát: un = 7n ‒ 3.
a) Tìm số hạng đầu và công sai của cấp số cộng (un).
b) Tìm u2012.
c) Tính tổng của 100 số hạng đầu tiên của cấp số cộng (un).
d) Số 1 208 là số hạng thứ bao nhiêu của cấp số cộng (un)?
Lời giải:
a) Ta có: u1 = 7.1 ‒ 3 = 4; u2 = 7.2 ‒ 3 = 11.
Vậy cấp số cộng (un) có số hạng đầu u1 = 4 và công sai d = u2 ‒ u1 = 11 ‒ 4 = 7.
b) u2012 = 7.2012 ‒ 3 = 14 081.
c) u100 = 7.100 ‒ 3 = 697.
d) Ta có un = 1 208
Do đó 7n ‒ 3 = 1 208
Suy ra n = 173
Vậy số 1 208 là số hạng thứ 173
Bài 4 trang 60 SBT Toán 11 Tập 1: Cho cấp số cộng (un), biết u1 = 5 và d = 3.
a) Tìm số hạng tổng quát của cấp số cộng (un).
b) Tìm u99.
c) Số 1 502 là số hạng thứ bao nhiêu của cấp số cộng (un)?
d) Cho biết Sn = 34 275. Tìm n.
Lời giải:
a) Số hạng tổng quát của cấp số cộng (un) là:
un = u1 + (n ‒ 1)d = 5 + (n ‒ 1).3 = 3n + 2.
b) Ta có u99 = 3.99 + 2 = 299.
c) Ta có: un = 1 502 nên 3n + 2 = 1 502, suy ra n = 500.
Vậy số 1 502 là số hạng thứ 500 .
d)
Suy ra n(10 + 3n – 3) = 2 . 34 275
Hay 3n2 + 7n – 68 550 = 0
Suy ra
Mà n ≥ 2 nên n = 150.
Bài 5 trang 60 SBT Toán 11 Tập 1: Cho cấp số cộng (un) có u18 ‒ u3 = 75. Tìm công sai d.
Lời giải:
Ta có:
u18 = u1 + 17d;
u3 = u1 + 2d.
Do đó:
u18 ‒ u3 = 75
⇔ u1 + 17d ‒ (u1 + 2d) = 75
⇔ 15d = 75
⇔ d = 5.
Vậy cấp số cộng (un) có công sai d = 5.
Bài 6 trang 61 SBT Toán 11 Tập 1: Cho cấp số cộng (un) có u4 + u12 = 90. Tìm S15.
Lời giải:
Gọi số hạng đầu của cấp số nhân là u1 và công sai là d.
Ta có:
u4 = u1 + 3d;
u12 = u1 + 11d.
Do đó: u4 + u12 = 90
⇔ u1 + 3d + u1 + 11d = 90
⇔ 2u1 + 14d = 90.
Khi đó
Bài 7 trang 61 SBT Toán 11 Tập 1: Xác định số hạng đầu và công sai của cấp số cộng (un), biết:
a)
b)
c)
Lời giải:
Gọi số hạng đầu của cấp số cộng là u1 và công sai là d.
a)
Vậy và
b)
Với d = 3 ta có: (u1 + 2.3)(u1 + 7.3) = 184
Vậy hoặc
c)
Từ u1 + 5d = 8 suy ra u1 = 8 ‒ 5d, thay vào biểu thức (*) ta có:
(8 ‒ 5d + d)2 + (8 ‒ 5d + 3d)2 = 16
⇔ (8 ‒ 4d)2 + (8 ‒ 2d)2 = 16
⇔ (64 – 64d + 16d2) + (64 – 32d + 4d2) = 16
⇔ 20d2 – 96d + 112 = 0
Với d = 2 thì u1 = 8 ‒ 5.2 = ‒2
Với thì
Vậy hoặc
⦁ Năm thứ nhất: 240 triệu;
⦁ Từ năm thứ hai trở đi: Mỗi năm tăng thêm 12 triệu.
Tính số tiền lương một năm của bác Tư vào năm thứ 11 .
Lời giải:
Gọi un là số tiền lương của bác Tư nhận được vào năm thứ n.
Khi đó, dãy số (un) tạo thành cấp số cộng có u1 = 240 và d = 12.
Ta có u11 = u1 + 10d = 240 + 10.12 = 360.
Vậy vào năm thứ 11, số tiền lương một năm của bác Tư là 360 triệu đồng.
Lời giải:
Gọi un là số ghế ở hàng thứ n.
Khi đó, dãy số (un) tạo thành cấp số cộng với u1 = 20 và d = 1.
Tổng số ghế có trong rạp hát là: (ghế).
Tổng số tiền vé thu được là: 590 . 60 000 = 35 400 000 (đồng).
Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Cấp số cộng
1. Cấp số cộng
Cấp số cộng là một dãy số (hữu hạn hoặc vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d, nghĩa là:
Số d được gọi là công sai của cấp số cộng.
* Nhận xét: Nếu là cấp số cộng thì kể từ số hạng thứ 2, mỗi số hạng (trừ số hạng cuối đối với cấp số cộng hữu hạn) đều là trung bình cộng của 2 sô hạng đứng kề nó trong dãy, tức là:
2. Số hạng tổng quát
Nếu cấp số cộng có số hạng đầu là và công sai d thì số hạng tổng quát của nó được xác định theo công thức
3. Tổng n số hạng đầu của một cấp số cộng
Cho cấp số cộng với công sai d. Đặt . Khi đó