Giải các phương trình lượng giác sau: a) sin (3x+pi/6) = căn 3/2

1.3 K

Với giải Bài 1 trang 30 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 5: Phương trình lượng giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 5: Phương trình lượng giác

Bài 1 trang 30 SBT Toán 11 Tập 1: Giải các phương trình lượng giác sau:

a) sin3x+π6=32;

b) cos(2x ‒ 30°) = ‒1;

c) 3sin(‒2x + 17°) = 4;

d) cos3x7π12=cosx+π4;

e) 3tanxπ41=0;

g) cotx3+2π5=cotπ5.

Lời giải:

a) sin3x+π6=32

sin3x+π6=sinπ3

3x+π6=π3+k2π,k hoặc 3x+π6=ππ3+k2π,k

x=π18+k2π3,k hoặc x=π6+k2π3,k

Vậy phương trình có nghiệm là x=π18+k2π3,k  x=π6+k2π3,k

b) cos(2x ‒ 30°) = ‒1

⇔ 2x ‒ 30° = 180° + k360° (k ∈ ℤ)

⇔ 2x = 210 + k360° (k ∈ ℤ)

⇔ x = 105° + k180° (k ∈ ℤ)

Vậy phương trình có nghiệm là x = 105° + k180° (k ∈ ℤ).

c) 3sin(‒2x + 17°) = 4

sin2x+17°=43

Do 43>1 nên phương trình vô nghiệm.

d) cos3x7π12=cosx+π4

3x7π12=x+π4+k2π,k
hoặc 3x7π12=x+π4+k2π,k

4x=5π6+k2π,k hoặc 2x=π3+k2π,k

x=5π24+kπ2,k hoặc x=π6+kπ,k

Vậy phương trình có nghiệm là x=5π24+kπ2,k  x=π6+kπ,k

d) cos3x7π12=cosx+π4

3x7π12=x+π4+k2π,k hoặc 3x7π12=x+π4+k2π,k

x=5π24+kπ2,k và x=π6+kπ,k

Vậy phương trình có nghiệm là x=5π24+kπ2,k và x=π6+kπ,k

e) 3tanxπ41=0

tanxπ4=13

tanxπ4=tanπ6

xπ4=π6+kπ,k

x=5π12+kπ,k

Vậy phương trình có nghiệm là x=5π12+kπ,k

g)cotx3+2π5=cotπ5

x3+2π5=π5+kπ,k

x=3π5+k3π,k

Vậy phương trình có nghiệm là x=3π5+k3π,k

Đánh giá

0

0 đánh giá