Sách bài tập Toán 11 Bài 1 (Chân trời sáng tạo): Dãy số

2 K

Với giải sách bài tập Toán 11 Bài 1: Dãy số sách Chân trời sáng tạo hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 1: Dãy số

Giải SBT Toán 11 trang 57

Bài 1 trang 57 SBT Toán 11 Tập 1: Cho dãy số (un) với un=n+12n+1. Số 815 là số hạng thứ bao nhiêu của dãy số?

Lời giải:

Ta có: n+12n+1=815

Suy ra 15(n + 1) = 8(2n + 1), hay 15n + 15 = 16n + 8, nên n = 7.

Vậy 815 là số hạng thứ bảy của dãy số.

Bài 2 trang 57 SBT Toán 11 Tập 1: Dự đoán công thức số hạng tổng quát của dãy số (un), biết u1=2un+1=21un

Lời giải:

Bốn số hạng đầu tiên của dãy un là:

u1 = ‒2;

u2=212=32;

u3=2132=43;

u4=2143=54;

Ta dự đoán được số hạng tổng quát của dãy số (un) là un=n+1n

Bài 3 trang 57 SBT Toán 11 Tập 1: Cho dãy số (un) xác định bởi u1=4un+1=un+nn1 Tìm số hạng thứ năm của dãy số đó.

Lời giải:

Ta có:

u2 = u1 + 1 = 4 + 1 = 5;

u3 = u2 + 2 = 5 + 2 = 7;

u4 = u3 + 3 = 7 + 3 = 10

Do đó, số hạng thứ năm của dãy số là u5 = u4 + 4 = 10 + 4 = 14.

Bài 4 trang 57 SBT Toán 11 Tập 1: Xét tính bị chặn của dãy số (un) với un = (‒1)n.

Lời giải:

Ta có:

u1 = (‒1)1 = −1; u3 = (‒1)3 = −1; …

u2 = (‒1)2 = 1; u4 = (‒1)4 = 1; …

Do đó ‒1 ≤ un ≤ 1, suy ra (un) là dãy bị chặn.

Giải SBT Toán 11 trang 58

Bài 5 trang 58 SBT Toán 11 Tập 1: Xét tính tăng, giảm và bị chặn của dãy số (un) cho bởi số hạng tổng quát un sau:

a) un=2n133n2;

b) un=n2+3n+1n+1;

c) un=11+n+n2.

Lời giải:

a) Số hạng tổng quát của (un) là un=2n133n2 nên un+1=2n+1133n+12=2n113n+1

Xét un+1un=2n113n+12n133n2

=2n113n22n133n+13n+13n2

=6n237n+226n237n133n+13n2

=353n+13n2>0,n*.

Suy ra un+1 > un, ∀n ∈ ℕ*. Suy ra (un) là dãy số tăng.

Mặt khác, ta có: un=2n133n2=233n23533n2=233533n2

⦁ Do n13n213533n2353233533n223353=11

⦁ Do n13n21>03533n2>0233533n2<23

Suy ra 11un<23,n*, suy ra (un) là dãy số bị chặn.

b) Số hạng tổng quát của (un) là un=n2+3n+1n+1

Nên un+1=n+12+3n+1+1n+1+1=n2+5n+5n+2

 un+1un=n2+5n+5n+2n2+3n+1n+1

 =n2+5n+5n+1n2+3n+1n+2n+1n+2

 =n3+n2+5n2+5n+5n+5n3+2n2+3n2+6n+n+2n+1n+2

 =n2+3n+3n+1n+2>0,n*

Suy ra un+1 > un, ∀n ∈ ℕ*. Suy ra (un) là dãy số tăng.

Mặt khác, ta có un>n2+2n+1n+1=n+12,n*. Suy ra (un) là dãy số bị chặn dưới.

c) Số hạng tổng quát của (un) là un=11+n+n2

Nên un+1=11+n+1+n+12=1n2+3n+3

Ta có un > 0, ∀n ∈ ℕ* nên un+1un=1n2+3n+31n2+n+1=n2+n+1n2+3n+3<1,n*

Suy ra un+1 < un, ∀n ∈ ℕ*. Suy ra (un) là dãy số giảm.

Mặt khác, ta có n1;  n21  1+n+n2311+n+n213 0<un13,n*. Suy ra (un) là dãy số bị chặn.

Bài 6 trang 58 SBT Toán 11 Tập 1: Xét tính tăng, giảm của các dãy số (un) cho bởi số hạng tổng quát un sau:

a) un=nn21;

b) un=n+1nn2;

c) un=3n12n.

Lời giải:

a) Ta có:

 un+1un=n+1n+121n+n21

 =1n+121n21<0,n*

Suy ra un+1 < un

Do đó un là dãy số giảm.

b) Xét un=n+1nn2, ta có: u1=0;u2=34;u3=29, suy ra u2>u1u3<u2.

Do đó, (un) là dãy số không tăng, không giảm.

c) Ta có:

un+1 - un 3n+112n+13n12n=3.3n12.2n3n12n

          =3.3n123n12.2n=3.3n12.3n+22.2n

          =3n+12n+1>0,  n*.

Do đó, (un) là dãy số tăng.

Bài 7 trang 58 SBT Toán 11 Tập 1: Xét tính tăng, giảm và bị chặn của dãy số (un) với un=1+122+132++1n2.

Lời giải:

Ta có:

 un=1+122+132++1n2;un+1=1+122+132++1n2+1n+12

Suy ra un+1un=1n+12>0,n*. Suy ra (un) là dãy số tăng.

Ta có: un=1+122+132++1n2, suy ra un > 1 ∀n ∈ N*. (1)

Hơn nữa: 
un=1+122+132++1n2<1+112+123++1n1n,  n*.

Ta có: 1+112+123++1n1n

            =1+1112+1213+...+1n11n

            =1+1112+1213+...+1n11n

            =1+11n=21n

Do đó un<21n, nên un < 2, ∀n ∈ ℕ*. (2)

Từ (1) và (2) ta có 1 < un < 2, ∀n ∈ ℕ*.

Suy ra (un) là dãy số bị chặn.

Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chương 1

Bài 1: Dãy số

Bài 2: Cấp số cộng

Bài 3: Cấp số nhân

Bài tập cuối chương 2

Bài 1: Giới hạn của dãy số

Lý thuyết Dãy số

1. Định nghĩa dãy số

  • Dãy số vô hạn

- Hàm số u xác định trên tập các số nguyên dương Nđược gọi là một dãy số vô hạn (gọi tắt là dãy số), nghĩa là

u:NR

nun=u(n)

  Dãy số trên được kí hiệu là (un).

- Dãy số (un)được viết dưới dạng khai triển u1,u2,u3,...,un,...

- Số u1 là số hạng đầu; unlà số hạng thứ n và gọi là số hạng tổng quát của dãy số.

*Chú ý: Nếu nN,un=cthì (un)được gọi là dãy số không đổi.

  • Dãy số hữu hạn

Mỗi hàm số u xác định trên tập M={1;2;3;...;m},mN được gọi là một dãy số hữu hạn.Dạng khai triển của dãy số hữu hạn là u1,u2,u3,...,um.

Trong đó, số u1 gọi là số hạng đầu, umlà số hạng cuối.

2. Cách cho một dãy số

Một dãy số có thể cho bằng:

- Liệt kê các số hạng (với các dãy hữu hạn).

- Công thức của số hạng tổng quát un.

- Phương pháp truy hồi:

+) Cho số hạng thứ nhất u1 (hoặc một vài số hạng đầu tiên)

+) Cho một công thức tính un theoun1 (hoặc theo vài số hạng đứng ngay trước nó).

- Phương pháp mô tả.

3. Dãy số tăng, dãy số giảm

Dãy số (un) được gọi là dãy số tăng nếu ta có un+1>un,nN.

Dãy số (un) được gọi là dãy số giảm nếu ta có un+1<un,nN.

4. Dãy số bị chặn

Dãy số (un) được gọi là bị chặn trên nếu  số M sao cho unM, nN.

Dãy số (un) được gọi là bị chặn dưới nếu  số m sao cho unm, nN.

Dãy số (un) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số m, M sao cho munM,nN.

Đánh giá

0

0 đánh giá