Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 11 Bài 5: Phương trình lượng giác chi tiết sách Toán 11 Tập 1 Chân trời sáng tạo giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 11. Mời các bạn đón xem:
Giải bài tập Toán lớp 11 Bài 5: Phương trình lượng giác
Lời giải:
Để xác định được các thời điểm mà tại đó độ dài bóng OM bằng 10cm thì s = 10
⇔ 17cos5πt = 10
Ta cần giải phương trình cos5πt =
Bài học này sẽ giúp chúng ta giải quyết phương trình trên.
a) x – 1 = 0;
b) x2 – 1 = 0;
c) .
Lời giải:
a) x – 1 = 0 ⇔ x = 1.
Vậy tập nghiệm của phương trình là S1 = {1}.
b) x2 – 1 = 0 ⇔ x = 1 hoặc x = – 1
Vậy tập nghiệm của phương trình là S2 = { – 1; 1}.
c)
Thay x = 1 và x = – 1 vào phương trình ban đầu ta thấy x = 1 là thỏa mãn.
Vậy tập nghiệm của phương trình là S3 = {1}.
Ta có nhận xét:
S1 = S3 ⊂ S2.
1. Phương trình tương đương
Thực hành 1 trang 35 Toán 11 Tập 1: Chỉ ra lỗi sai trong phép biến đổi phương trình dưới đây
Lời giải:
Lỗi sai: Phương trình x2 = 2x và phương trình không tương đương vì:
Phương trình x2 = 2x có tập nghiệm S1 = {0; 2}.
Phương trình có tập nghiệm S2 = {2}.
2. Phương trình sinx = m
Hoạt động khám phá 2 trang 35 Toán 11 Tập 1: a) Có giá trị nào của x để sinx = 1,5 không?
b) Trong Hình 1, những điểm nào trên đường tròn lượng giác biểu diễn góc lượng giác x có sinx = 0,5? Xác định số đo của các góc lượng giác đó.
Lời giải:
a) Vì – 1 ≤ x ≤ 1 mà 1,5 > 1 nên không tồn tại giá trị của x để sinx = 1,5.
b) Trên Hình 1, những điểm trên đường tròn biểu diễn góc lượng giác x có sinx = 0,5 là điểm M và N.
Điểm M biểu diễn cho các góc lượng giác có số đo là .
Điểm N biểu diễn cho các góc lượng giác có số đo là .
Thực hành 2 trang 36 Toán 11 Tập 1: Giải các phương trình sau:
a) sinx = ;
b) sin(x + 30°) = sin(x + 60°).
Lời giải:
a) sinx =
Vì sin = nên phương trình sinx = = sin có các nghiệm là:
và , k ∈ ℤ.
Vậy tập nghiệm của phương trình đã cho là: S = .
b) sin(x + 30°) = sin(x + 60°)
⇔ x + 30° = x + 60° + k360° hoặc x + 30° = 360° – x – 60° + k360° (k ∈ ℤ)
⇔ 30° = 60° + k360° (vô lí) hoặc x = 150° + k180° (k ∈ ℤ).
Vậy tập nghiệm của phương trình đã cho là: S = {150° + k180°, k ∈ ℤ}.
3. Phương trình cosx = m
Lời giải:
Trên đường tròn lượng giác điểm M và N biểu diễn diễn góc lượng giác x có cosx = .
Điểm M là điểm biểu diễn cho các góc lượng giác có số đo là: .
Điểm N là điểm biểu diễn cho các góc lượng giác có số đo là: .
Thực hành 3 trang 37 Toán 11 Tập 1: Giải các phương trình sau
a) cosx = – 3;
b) cosx = cos15°;
c) .
Lời giải:
a) Vì – 3 < – 1 nên phương trình cosx = – 3 vô nghiệm.
b) cosx = cos15°
⇔ x = 15° + k360° hoặc x = – 15° + k360° .
Vậy tập nghiệm của phương trình là S = {15° + k360°; – 15° + k360°, k ∈ ℤ}.
c)
hoặc
hoặc
Vậy tập nghiệm của phương trình là S = .
4. Phương trình tanx = m
Lời giải:
Ta thấy M và N là hai điểm biểu diễn các góc lượng giác thỏa mãn tanx = .
Điểm M là điểm biểu diễn các góc lượng giác có số đo .
Điểm N là điểm biểu diễn các góc lượng giác có số đo .
Thực hành 4 trang 38 Toán 11 Tập 1: Giải các phương trình sau
a) tanx = 0;
b) tan(30° – 3x) = tan75°.
Lời giải:
a) Điều kiện xác định là: .
Vì tan0 = 0 nên phương trình tanx = 0 có các nghiệm x = kπ, k ∈ ℤ.
Vậy tập nghiệm của phương trình là: S = {kπ, k ∈ ℤ}.
b) tan(30° – 3x) = tan75°
⇔ tan(3x – 30°) = tan(– 75°)
⇔ 3x – 30° = – 75° + k360°, k ∈ ℤ
⇔ 3x = – 45° + k360°, k ∈ ℤ
⇔ x = – 15° + k120°, k ∈ ℤ
Vậy tập nghiệm của phương trình là: S = { – 15° + k120°, k ∈ ℤ}.
5. Phương trình cotx = m
Lời giải:
Trên đường tròn lượng giác hai điểm M và N biểu diễn các góc lượng giác có số đo góc x thỏa mãn cotx = – 1.
Điểm M biểu diễn các góc lượng giác có số đo góc .
Điểm N biểu diễn các góc lượng giác có số đo góc .
Giải Toán 11 trang 39 Tập 1
Thực hành 5 trang 39 Toán 11 Tập 1: Giải các phương trình sau:
a) cotx = 1;
b) cot(3x + 30°) = cot75°.
Lời giải:
a) Vì cot= 1 nên phương trình cotx = 1 có các nghiệm là .
Vậy tập nghiệm của phương trình là: S = .
b) cot(3x + 30°) = cot75°
⇔ 3x + 30° = 75° + k180°, k ∈ ℤ
⇔ 3x = 45° + k180°, k ∈ ℤ
⇔ x = 15° + k60°, k ∈ ℤ
Vậy tập nghiệm của phương trình là: S = {15° + k60°, k ∈ ℤ}.
6. Giải phương trình lượng giác bằng máy tính cầm tay
Thực hành 6 trang 40 Toán 11 Tập 1: Sử dụng máy tính cầm tay để giải các phương trình sau:
a) cosx = 0,4;
b) tanx = .
Lời giải:
a) Sử dụng máy tính cầm tay ta có: cos1,16 ≈ 0,4 nên cosx = cos1,16 do đó các nghiệm của phương trình là x = 1,16 + k2π và x = – 1,16 + k2π với k ∈ ℤ.
Vậy tập nghiệm của phương trình là S = {1,16 + k2π; – 1,16 + k2π, k ∈ ℤ}.
b) Sử dụng máy tính cầm tay ta có: tan = nên tanx = tan do đó các nghiệm của phương trình là x = + k với k ∈ ℤ.
Vậy tập nghiệm của phương trình là S = .
Lời giải:
Xét phương trình |17cos5πt| = 10
Độ dài bóng |x| bằng 10 cm tại các thời điểm t = 0,06 +k, t = 0,14 + k (kZ).
Bài tập
Bài 1 trang 40 Toán 11 Tập 1: Giải các phương trình lượng giác sau:
a) sin2x = ;
b) sin = sin;
c) sin4x - cos = 0.
Lời giải:
a) Vì sin = nên ta có phương trình sin2x = sin
Vậy tập nghiệm của phương trình là: S = .
b) sin= sin
Vậy tập nghiệm của phương trình là: S = .
c) sin4x - cos = 0
Vậy tập nghiệm của phương trình là: S = .
Bài 2 trang 40 Toán 11 Tập 1: Giải các phương trình lượng giác sau:
a) cos;
b) cos4x = cos;
c) cos2x = 1.
Lời giải:
Vậy tập nghiệm của phương trình là: S = .
Vậy tập nghiệm của phương trình là: S = .
c) cos2x = 1
Vậy tập nghiệm của phương trình là: S = {k, kZ}.
Bài 3 trang 41 Toán 11 Tập 1: Giải các phương trình lượng giác sau:
a) tanx = tan55°;
b) tan=0.
Lời giải:
a) tanx = tan55° (điều kiện xác định x ≠ 90° + k180°).
⇔ x = 55° + k180°, k ∈ ℤ (thỏa mãn điều kiện)
Vậy tập nghiệm của phương trình S = {55° + k180°, k ∈ ℤ}.
b) tan=0 (điều kiện xác định )
(thỏa mãn điều kiện)
Vậy tập nghiệm của phương trình là S = .
Bài 4 trang 41 Toán 11 Tập 1: Giải các phương trình lượng giác sau:
a) cot= -1;
b) cot3x = .
Lời giải:
a) cot = -1 (điểu kiện xác định x # + k2, kZ)
(thỏa mãn điều kiện)
Vậy tập nghiệm của phương trình là S = .
b) cot3x = (điểu kiện xác định x # k, kZ)
Vậy tập nghiệm của phương trình là S = .
Lời giải:
Xét phương trình hoành độ giao điểm: sinx = cosx
⇔ cosx = cos
Vậy tập nghiệm của bất phương trình là: S = .
Bài 6 trang 41 Toán 11 Tập 1: Trong Hình 9, khi được kéo ra khỏi vị trí cân bằng ở điểm O và buông tay, lực đàn hồi của lò xo khiến vật A gắn ở đầu của lò xo dao động quanh O. Tọa độ s (cm) của A trên trục Ox vào thời điểm t (giây) sau khi buông tay được xác định bởi công thức s = 10sin. Vào các thời điểm nào thì s = -5 cm?
(Theo https://www.britannica.com/science/simple-harmonic-motion )
Lời giải:
Xét phương trình: 10sin = -5
Vậy vào các thời điểm và thì s = -5 cm.
(Theo https://www.mnhs.org/splitrock/learn/technology)
a) Ban đầu luồng sáng trùng với đường thẳng HO. Viết hàm số biểu thị tọa độ yM của điểm M trên trục Oy theo thời gian t.
b) Ngôi nhà N nằm trên bờ biển với tọa độ yS = – 1 (km). Xác định các thời điểm t mà đèn hải đăng chiếu vào ngôi nhà.
Lời giải:
a) Sau t giây điểm M quét được một góc lượng giác có số đo là: rad.
Xét tam giác HOM vuông tại O có:
MO = tanα.1 = tan.
Vậy tọa độ yM = tan.
b) Xét tan = -1
tan = tan
= + k, kZ
t = -2,5 + 10k, kZ
Vì t ≥ 0 nên tại các thời điểm t = -2,5 + 10k, kZ, k1 thì đèn hải đăng chiếu vào ngôi nhà.
Video bài giảng Toán 11 Bài 5: Phương trình lượng giác - Chân trời sáng tạo
Xem thêm các bài giải SGK Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 4: Hàm số lượng giác và đồ thị
Bài 5: Phương trình lượng giác
Lý thuyết Phương trình lượng giác cơ bản
1. Phương trình tương đương
- Hai phương trình được gọi là tương đương khi chúng có cùng tập nghiệm.
- Nếu phương trình f(x) =0 tương đương với phương trình g(x) =0 thì ta viết
- Các phép biến đổi tương đương:
+ Cộng hay trừ hai vế với cùng một số hoặc cùng một biểu thức.
+ Nhân hoặc chia 2 vế với cùng một số khác 0 hoặc với cùng một biểu thức luôn có giá trị khác 0.
2. Phương trình
Phương trình sinx = m ,
Khi đó, tồn tại duy nhất thoả mãn ,
* Chú ý:
a, Nếu số đo của góc được cho bằng đơn vị độ thì
b, Một số trường hợp đặc biệt
3. Phương trình
Phương trình ,
Khi sẽ tồn tại duy nhất thoả mãn . Khi đó:
* Chú ý:
a, Nếu số đo của góc được cho bằng đơn vị độ thì
b, Một số trường hợp đặc biệt
4. Phương trình
Phương trình có nghiệm với mọi m.
Với mọi , tồn tại duy nhất thoả mãn . Khi đó:
*Chú ý: Nếu số đo của góc được cho bằng đơn vị độ thì
5. Phương trình
Phương trình có nghiệm với mọi m.
Với mọi , tồn tại duy nhất thoả mãn . Khi đó:
*Chú ý: Nếu số đo của góc được cho bằng đơn vị độ thì
6. Giải phương trình lượng giác bằng máy tính cầm tay
Bước 1. Chọn đơn vị đo góc (độ hoặc radian).
Muốn tìm số đo độ, ta ấn: SHIFT MODE 3 (CASIO FX570VN).
Muốn tìm số đo radian, ta ấn: SHIFT MODE 4 (CASIO FX570VN).
Bước 2. Tìm số đo góc.
Khi biết SIN, COS, TANG của góc ta cần tìm bằng m, ta lần lượt ấn các phím SHIFT và một trong các phím SIN, COS, TANG rồi nhập giá trị lượng giác m và cuối cùng ấn phím “BẰNG =”. Lúc này trên màn hình cho kết quả là số đo của góc .