Với giải Bài 6 trang 59 Toán lớp 10 Chân trời sáng tạo chi tiết trong Bài tập cuối chương 3 học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
Giải bài tập Toán lớp 10 Bài tập cuối chương 3
Bài 6 trang 59 Toán lớp 10: Nhảy bungee là một trò chơi mạo hiểm. Trong trò chơi này, người chơi đứng ở vị trí trên cao, thắt dây an toàn và nhảy xuống. Sợi dây này có tính đàn hồi và được tính toán chiều dài để nó kéo người chơi lại khi gần chạm đất (hoặc mặt nước). Chiếc cầu trong Hình 1 có bộ phận chống đỡ dạng parabol. Một người muốn thực hiện một cú nhày bungee từ giữa cầu xuống với dây an toàn. Người này cần trang bị sợi dây an toàn dài bao nhiêu mét? Biết rằng chiều dài của sợi dây đó bằng một phần ba khoảng cách từ vị trí bắt đầu nhảy đến mặt nước.
Phương pháp giải:
Gắn hệ trục tọa độ, gọi công thức của hàm số có đồ thị là hình ảnh của bộ phận chống đỡ.
Xác định hàm số và xác định tung độ của đỉnh.
Lời giải:
Gọi là công thức của hàm số có đồ thị là hình ảnh của bộ phận chống đỡ.
Chọn hệ trục tọa độ Oxy như hình dưới:
Gọi S là đỉnh của parabol, dưới vị trí nhảy 1m.
A, B là các điểm như hình vẽ.
Dễ thấy: A (48; 46,2) và B (117+48; 0) = (165; 0).
Các điểm O, A, B đều thuộc đồ thị hàm số.
Do đó:
Giải hệ phương trình ta được
Vậy
Đỉnh S có tọa độ là
Khoảng cách từ vị trí bắt đầu nhảy đến mặt nước là:
Vậy chiều dài của sợi dây đó là:
Bài tập vận dụng:
Bài 1. Tìm tập xác định của các hàm số sau:
a) ;
b) .
c)
Hướng dẫn giải
a) Biểu thức có nghĩa ⇔ 2x + 1 ≥ 0 ⇔ 2x ≥ ‒ 1 ⇔ x ≥ .
Vậy tập xác định D của hàm số này là D = .
b) Biểu thức có nghĩa ⇔ x + 3 ≠ 0 ⇔ x ≠ ‒3.
Vậy tập xác định D của hàm số này là D = ℝ\ {‒3}.
c) Biểu thức có nghĩa khi và chỉ khi:
Vậy tập xác định của hàm số này là D = [‒2022; +¥) \{0}.
Bài 2. Trong các hàm số sau đây, hàm số nào là đồng biến, nghịch biến? Tại sao?
a) y = f(x) = ‒ 2x + 2.
b) y = f(x) = x2.
Hướng dẫn giải
a) Hàm số y = f(x) = ‒2x + 2 xác định trên ℝ.
Xét hai giá trị x1 = 1 và x2 = 2 đều thuộc ℝ, ta có:
f(x1) = f(1) = ‒2. 1 + 2 = 0.
f(x2) = f(2) = ‒2. 2 + 2 = ‒2.
Ta thấy x1 < x2 và f(x1) > f(x2) nên hàm số y = f(x) = ‒2x + 2 là hàm số nghịch biến trên ℝ.
b) Hàm số y = f(x) = x2 xác định trên ℝ.
Xét hai giá trị x1 = 1 và x2 = 2 đều thuộc ℝ, ta có:
f(x1) = f(1) = 12 = 1.
f(x2) = f(2) = 22 = 4.
Ta thấy x1 < x2 và f(x1) < f(x2) nên hàm số y = f(x) = x2 là hàm số đồng biến trên ℝ.
Bài 3. Tìm tập xác định và vẽ đồ thị hàm số:
y = f(x) = |2x + 3|.
Hướng dẫn giải
Tập xác định của hàm số D = ℝ.
Ta có: y = |2x + 3| =
Ta vẽ đồ thị y = 2x + 3 với (d1)
Ta có bảng sau:
x |
0 |
|
y = f(x) |
3 |
0 |
Suy ra đồ thị hàm số y = f(x) = 2x + 3 với là phần đồ thị nằm bên trên trục Ox và đi qua các điểm A( ; 0) và B(0; 3).
Ta có đồ thị như sau:
Tương tự ta có đồ thị hàm số y = f(x) = - 2x - 3 với x < - là phần đồ thị nằm bên trên trục Ox và đi qua các điểm C(-2; 1) và D(-3; 3).
Kết hợp 2 đồ thị ta có đồ thị hàm số y = |2x + 3| là phần đồ thị nét liền nằm trên trục Ox.
Xem thêm các bài giải Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 1 trang 59 Toán lớp 10: Tìm tập xác định của các hàm số sau:...
Bài 2 trang 59 Toán lớp 10: Tìm điều kiện của m để mỗi hàm số sau là hàm số bậc hai:...
Bài 3 trang 59 Toán lớp 10: Vẽ đồ thị các hàm số sau:...
Xem thêm các bài giải SGK Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Giá trị lượng giác của một góc từ 00 đến 1800
Bài 2: Định lí cosin và định lí sin
Bài 3: Giải tam giác và ứng dụng thực tế