Với giải Bài 1 trang 59 Toán lớp 10 Chân trời sáng tạo chi tiết trong Bài tập cuối chương 3 học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
Giải bài tập Toán lớp 10 Bài tập cuối chương 3
Bài 1 trang 59 Toán lớp 10: Tìm tập xác định của các hàm số sau:
a)
b)
c)
Phương pháp giải:
Tập xác định của hàm số là tập hợp tất cả các số thực x sao cho biểu thức có nghĩa.
có nghĩa
a) Biểu thức có nghĩa với mọi
Vậy tập xác định của hàm số này là
b) Biểu thức có nghĩa khi và chỉ khi tức là với mọi
Vậy tập xác định của hàm số này là
c) Biểu thức có nghĩa khi và chỉ khi có nghĩa, tức là khi
Vậy tập xác định của hàm số này là
Bài tập vận dụng:
Bài 1. Tìm tập xác định của các hàm số sau:
a) ;
b) .
c)
Hướng dẫn giải
a) Biểu thức có nghĩa ⇔ 2x + 1 ≥ 0 ⇔ 2x ≥ ‒ 1 ⇔ x ≥ .
Vậy tập xác định D của hàm số này là D = .
b) Biểu thức có nghĩa ⇔ x + 3 ≠ 0 ⇔ x ≠ ‒3.
Vậy tập xác định D của hàm số này là D = ℝ\ {‒3}.
c) Biểu thức có nghĩa khi và chỉ khi:
Vậy tập xác định của hàm số này là D = [‒2022; +¥) \{0}.
Bài 2. Trong các hàm số sau đây, hàm số nào là đồng biến, nghịch biến? Tại sao?
a) y = f(x) = ‒ 2x + 2.
b) y = f(x) = x2.
Hướng dẫn giải
a) Hàm số y = f(x) = ‒2x + 2 xác định trên ℝ.
Xét hai giá trị x1 = 1 và x2 = 2 đều thuộc ℝ, ta có:
f(x1) = f(1) = ‒2. 1 + 2 = 0.
f(x2) = f(2) = ‒2. 2 + 2 = ‒2.
Ta thấy x1 < x2 và f(x1) > f(x2) nên hàm số y = f(x) = ‒2x + 2 là hàm số nghịch biến trên ℝ.
b) Hàm số y = f(x) = x2 xác định trên ℝ.
Xét hai giá trị x1 = 1 và x2 = 2 đều thuộc ℝ, ta có:
f(x1) = f(1) = 12 = 1.
f(x2) = f(2) = 22 = 4.
Ta thấy x1 < x2 và f(x1) < f(x2) nên hàm số y = f(x) = x2 là hàm số đồng biến trên ℝ.
Bài 3. Tìm tập xác định và vẽ đồ thị hàm số:
y = f(x) = |2x + 3|.
Hướng dẫn giải
Tập xác định của hàm số D = ℝ.
Ta có: y = |2x + 3| =
Ta vẽ đồ thị y = 2x + 3 với (d1)
Ta có bảng sau:
x |
0 |
|
y = f(x) |
3 |
0 |
Suy ra đồ thị hàm số y = f(x) = 2x + 3 với là phần đồ thị nằm bên trên trục Ox và đi qua các điểm A( ; 0) và B(0; 3).
Ta có đồ thị như sau:
Tương tự ta có đồ thị hàm số y = f(x) = - 2x - 3 với x < - là phần đồ thị nằm bên trên trục Ox và đi qua các điểm C(-2; 1) và D(-3; 3).
Kết hợp 2 đồ thị ta có đồ thị hàm số y = |2x + 3| là phần đồ thị nét liền nằm trên trục Ox.
Xem thêm các bài giải Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 2 trang 59 Toán lớp 10: Tìm điều kiện của m để mỗi hàm số sau là hàm số bậc hai:...
Bài 3 trang 59 Toán lớp 10: Vẽ đồ thị các hàm số sau:...
Xem thêm các bài giải SGK Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Giá trị lượng giác của một góc từ 00 đến 1800