Cho tam giác ABC có O là giao điểm của ba đường trung trực (Hình 5)

90

Với giải Hoạt động 2 trang 69 Toán 9 Tập 2 Cánh diều chi tiết trong Bài 1: Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 1: Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác

Hoạt động 2 trang 69 Toán 9 Tập 2: Cho tam giác ABC có O là giao điểm của ba đường trung trực (Hình 5).

Hoạt động 2 trang 69 Toán 9 Tập 2 Cánh diều | Giải Toán 9

a) Các đoạn thẳng OA, OB và OC có bằng nhau hay không?

b) Đặt R = OA. Đường tròn (O; R) có phải là đường tròn ngoại tiếp tam giác ABC hay không? Vì sao?

Lời giải:

a) Vì O là giao điểm của ba đường trung trực của tam giác ABC nên điểm O cách đều ba đỉnh của tam giác ABC.

Do đó OA = OB = OC.

b) Ta có OA = OB = OC = R nên ba điểm A, B, C cùng nằm trên đường tròn (O; R) hay đường tròn (O; R) đi qua ba đỉnh của tam giác.

Vậy đường tròn (O; R) là đường tròn ngoại tiếp tam giác ABC.

Đánh giá

0

0 đánh giá