Với giải Bài 2 trang 97 Toán 9 Tập 1 Chân trời sáng tạo chi tiết trong Bài 3: Góc ở tâm, góc nội tiếp giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:
Giải bài tập Toán 9 Bài 3: Góc ở tâm, góc nội tiếp
Bài 2 trang 97 Toán 9 Tập 1: Cho tam giác đều ABC. Vẽ nửa đường tròn đường kính BC cắt cạnh AB và AC lần lượt tại D và E. Hãy so sánh các cung
Lời giải:
Gọi O là trung điểm của BC. Khi đó ta có đường tròn (O) đường kính BC chứa các cung BD, DE, EC.
Vì ∆ABC là tam giác đều nên
Xét ∆OBD có OB = OD (cùng bằng bán kính đường tròn (O) đường kính BC) nên ∆OBD cân tại O.
Lại có nên ∆OBD là tam giác đều, suy ra Khi đó (1)
Tương tự, ta cũng có ∆OCE là tam giác đều, suy ra Khi đó (2)
Ta có BC là đường kính của đường tròn nên
Có
Suy ra
Do đó Khi đó (3)
Từ (1), (2) và (3) ta có:
Do đó các cung BD, DE, EC bằng nhau.
Sơ đồ tư duy Góc ở tâm, góc nội tiếp
Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:
Vận dụng 1 trang 91 Toán 9 Tập 1: Tính số đo góc ở tâm được tạo thành khi kim giờ quay:......
Bài 6 trang 97 Toán 9 Tập 1: Xác định số đo các cung trong mỗi hình vẽ sau.......
Xem thêm các bài giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:
Bài 2. Tiếp tuyến của đường tròn
Bài 3. Góc ở tâm, góc nội tiếp
Bài 4. Hình quạt tròn và hình vành khuyên