Cho tam giác đều MNP có ba đỉnh nằm trên đường tròn (I). Hãy chỉ ra các góc nội

249

Với giải Thực hành 4 trang 93 Toán 9 Tập 1 Chân trời sáng tạo chi tiết trong Bài 3: Góc ở tâm, góc nội tiếp giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 3: Góc ở tâm, góc nội tiếp

Thực hành 4 trang 93 Toán 9 Tập 1: Cho tam giác đều MNP có ba đỉnh nằm trên đường tròn (I). Hãy chỉ ra các góc nội tiếp của đường tròn (I) và tính số đo của các góc nội tiếp đó.

Lời giải:

Thực hành 4 trang 93 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Xét đường tròn (I), ta có các góc nội tiếp đường tròn là: MNP^,  NPM^,  PMN^.

Vì ∆MNP là tam giác đều nên MNP^=NPM^=PMN^=60°.

Lý Thuyết Góc nội tiếp

Định nghĩa

Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn đó. Cung nằm bên trong của góc được gọi là cung bị chắn.

Số đo góc nội tiếp

Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn.

Ví dụ:

Lý thuyết Góc ở tâm, góc nội tiếp (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 2)

AMB^ là góc nội tiếp chắn AB trên đường tròn (O) nên AMB^=12AB.

Chú ý: Trong một đường tròn:

- Các góc nội tiếp bằng nhau chắn các cung bằng nhau.

- Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau.

- Góc nội tiếp nhỏ hơn hoặc bằng 90o có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.

Góc nội tiếp chắn nửa đường tròn là góc vuông.

Lý thuyết Góc ở tâm, góc nội tiếp (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 3)

Đánh giá

0

0 đánh giá