Cho đường tròn (O; R) và dây AB khác đường kính. Gọi M là trung điểm của AB. Đường thẳng

1 K

Với giải Bài 6 trang 100 Toán 9 Tập 1 Cánh diều chi tiết trong Bài 1: Đường tròn. Vị trí tương đối của hai đường tròn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 1: Đường tròn. Vị trí tương đối của hai đường tròn

Bài 6 trang 100 Toán 9 Tập 1: Cho đường tròn (O; R) và dây AB khác đường kính. Gọi M là trung điểm của AB.

a) Đường thẳng OM có phải là đường trung trực của đoạn thẳng AB hay không? Vì sao?

b) Tính khoảng cách từ điểm O đến đường thẳng AB, biết R = 5 cm, AB = 8 cm.

Lời giải:

Bài 6 trang 100 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a) Vì AB là dây cung của đường kính (O; R) nên ta có OA = OB = R.

Khi đó, O nằm trên đường trung trực của AB.

Lại có M là trung điểm của AB nên M cũng nằm trên đường trung trực của AB.

Do đó OM là đường trung trực của đoạn thẳng AB.

b) Vì M là trung điểm của AB nên ta có MA = MB = AB2=82 = 4 (cm).

Vì OM là đường trung trực của đoạn thẳng AB nên OM ⊥ AB hay ∆OAM vuông tại M.

Theo định lí Pythagore ta có: OA2 = OM2 + AM2

Suy ra OM2 = OA2 – AM2 = 52 – 42 = 9.

Do đó OM = 3 cm.

Vậy khoảng cách từ điểm O đến đường thẳng AB là 3 cm.

Sơ đồ tư duy Đường tròn. Vị trí tương đối của hai đường tròn

Đánh giá

0

0 đánh giá