Cho đường tròn (O; R). Giả sử d là đường thẳng đi qua tâm O, M là một điểm tùy ý trên

106

Với giải Hoạt động 4 trang 95 Toán 9 Tập 1 Cánh diều chi tiết trong Bài 1: Đường tròn. Vị trí tương đối của hai đường tròn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 1: Đường tròn. Vị trí tương đối của hai đường tròn

Hoạt động 4 trang 95 Toán 9 Tập 1: Cho đường tròn (O; R). Giả sử d là đường thẳng đi qua tâm O, M là một điểm tùy ý trên đường tròn (O; R). Kẻ MH vuông góc với d tại H. Trên tia MH lấy điểm N sao cho H là trung điểm của MN (ta gọi điểm N là điểm đối xứng với điểm M qua đường thẳng d). Điểm N có thuộc đường tròn (O; R) hay không?

Lời giải:

Hoạt động 4 trang 95 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Nối OM, ON.

Xét ∆OMH (vuông tại H)và ∆ONH (vuông tại H) ta có:

MH = NH (do H là trung điểm của MN);

OH là cạnh chung.

Do đó ∆OMH = ∆ONH (hai cạnh góc vuông).

Suy ra OM = ON (hai cạnh tương ứng).

Mà M thuộc đường tròn (O; R) nên OM = R nên ON = R, do đó N thuộc đường tròn (O; R).

Lý thuyết Tính đối xứng của đường tròn

Nhận xét: Điểm đối xứng của một điểm tùy ý trên đường tròn qua tâm của đường tròn cũng nằm trên đường tròn đó.

Đường tròn là hình có tâm đối xứng. Tâm của đường tròn là tâm đối xứng của đường tròn đó.

Nhận xét: Điểm đối xứng của một điểm tùy ý trên đường tròn qua một đường thẳng đi qua tâm của đường tròn cũng nằm trên đường tròn đó.

Đường tròn là hình có trục đối xứng. Mỗi đường thẳng đi qua tâm là một trục đối xứng của đường tròn đó.

Ví dụ:

Lý thuyết Đường tròn. Vị trí tương đối của hai đường tròn (Cánh diều 2024) | Lý thuyết Toán 9 (ảnh 4)

Hình tròn tâm I có:

I là tâm đối xứng;

Đường thẳng a, b là các trục đối xứng của hình tròn (I).

Đánh giá

0

0 đánh giá