Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 9 Bài tập cuối chương 4 trang 92 chi tiết sách Toán 9 Tập 1 Cánh diều giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 9. Mời các bạn đón xem:
Giải bài tập Toán 9 Bài tập cuối chương 4 trang 92
Bài 1 trang 92 Toán 9 Tập 1: Cho tam giác ABC vuông tại A có đường cao AH và (Hình 40).
a) Tỉ số bằng
A. sinα.
B. cosα.
C. tanα.
D. cotα.
b) Tỉ số bằng
A. sinα.
B. cosα.
C. tanα.
D. cotα.
c) Tỉ số bằng
A. sinα.
B. cosα.
C. tanα.
D. cotα.
Lời giải:
a) Đáp án đúng là: C
Xét ∆ABH vuông tại H, ta có tanB = hay = tan.
b) Đáp án đúng là: D
Xét ∆ACH vuông tại H, ta có tanC = .
Xét ∆ABC vuông tại A, ta có (tổng hai góc nhọn trong tam giác vuông)
Suy ra và là hai góc phụ nhau nên tanC = cotB.
Do đó = tanC = cotB = cot.
c) Đáp án đúng là: B
Xét ∆ACH vuông tại H, ta có sinC = .
Mà và là hai góc phụ nhau nên sinC = cosB.
Do đó = sinC = cosB = cos.
Bài 2 trang 92 Toán 9 Tập 1: Cho hình thoi ABCD có AB = a, Chứng minh:
a) BD = 2a.sinα;
b) AC = 2a.cosα.
Lời giải:
a) Gọi O là giao điểm của đường chéo AC và BD.
Vì ABCD là hình thoi nên AC ⊥ BD tại trung điểm O của mỗi đường và AC là đường phân giác của
Suy ra AC = 2AO, BD = 2BO và
Xét ∆ABO vuông tại O, ta có: BO = AB.sin = a.sin.
Do đó BD = 2BO = 2a.sinα.
b) Xét ∆ABO vuông tại O, ta có: AO = AB.cos = a.cos.
Do đó AC = 2AO = 2a.cosα.
Lời giải:
Xét ∆OAH vuông tại H, ta có: AH = OA.sin = 3.sin43o 2(m).
Vậy khoảng cách từ em bé đến vị trí cân bằng khoảng 2 m.
– Sử dụng la bàn, xác định được phương BA lệch với phương Nam – Bắc về hướng Đông 52°.
– Người đó di chuyển đến vị trí C, cách B một khoảng là 187 m. Sử dụng la bàn, xác định được phương CA lệch với phương Nam – Bắc về hướng Tây 27°; CB lệch với phương Nam – Bắc về hướng Tây 70° (Hình 42).
Em hãy giúp người đó tính khoảng cách AB từ những dữ liệu trên (làm tròn kết quả đến hàng đơn vị của mét).
Lời giải:
Kẻ AA’ (A’ ∈ BC) theo phương Bắc – Nam và kẻ BB’, CC’ theo phương Nam – Bắc (hình vẽ). Khi đó AA’ // BB’ // CC’.
Phương BA lệch với phương Nam – Bắc về hướng Đông 52° nên
Phương CA lệch với phương Nam – Bắc về hướng Tây 27° nên
Phương CB lệch với phương Nam – Bắc về hướng Tây 70° nên
Do đó
Kẻ BH ⊥ AC (H ∈ AC).
Xét ∆BCH vuông tại H, ta có: BH = BC.sin = 187.sin43o (m).
Vì AA’ // BB’ nên (hai góc so le trong).
Vì AA’ // CC’ nên (hai góc so le trong).
Do đó
Xét ∆ABH vuông tại H, ta có:
BH = AB.sin, suy ra AB =
Vậy khoảng cách AB khoảng 130 mét.
Xem thêm các bài giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:
§3. Ứng dụng của tỉ số lượng giác của góc nhọn
§1. Đường tròn. Vị trí tương đối của hai đường tròn
§2. Vị trí tương đối của đường thẳng và đường tròn