Quan sát Hình 5 So sánh MN và OM + ON. So sánh MN và AB

312

Với giải Hoạt động 2 trang 94 Toán 9 Tập 1 Cánh diều chi tiết trong Bài 1: Đường tròn. Vị trí tương đối của hai đường tròn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 1: Đường tròn. Vị trí tương đối của hai đường tròn

Hoạt động 2 trang 94 Toán 9 Tập 1: Quan sát Hình 5.

Hoạt động 2 trang 94 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a) So sánh MN và OM + ON.

b) So sánh MN và AB.

Lời giải:

a) Xét ∆OMN ta có MN < OM + ON (1) (Bất đẳng thức tam giác).

b) Vì A, M, N, B cùng thuộc đường tròn (O) nên OA = OM = ON = OB.

Ta có: OM + ON = OA + OB.

Lại có AB = OA + OB, do đó OM + ON < AB. (2)

Từ (1) và (2) suy ra MN < AB.

Lý thuyết Liên hệ giữa đường kính và dây của đường tròn

Chú ý:

- Đoạn thẳng nối hai điểm phân biệt thuộc đường tròn được gọi là dây (hay dây cung) của đường tròn.

- Dây đi qua tâm là đường kính của đường tròn. Trong các dây của đường tròn, dây lớn nhất là đường kính.

Ví dụ: Cho hai điểm C, D cùng thuộc một đường tròn. Đoạn thẳng CD gọi là dây cung hoặc dây. Đường kính AB  là một dây đi qua tâm.

Lý thuyết Đường tròn. Vị trí tương đối của hai đường tròn (Cánh diều 2024) | Lý thuyết Toán 9 (ảnh 3)

Đánh giá

0

0 đánh giá