Bóng trên mặt đất của một cây dài 25 m. Tính chiều cao của cây (làm tròn đến dm), biết rằng

1.1 K

Với giải Luyện tập 2 trang 76 Toán 9 Tập 1 Kết nối tri thức chi tiết trong Bài 12: Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 12: Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng

Luyện tập 2 trang 76 Toán 9 Tập 1: Bóng trên mặt đất của một cây dài 25 m. Tính chiều cao của cây (làm tròn đến dm), biết rằng tia nắng mặt trời tạo với mặt đất góc 40° (H.4.18).

Luyện tập 2 trang 76 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Lời giải:

Ta nhận thấy chiều cao h của cây đối diện với góc 40° (góc tạo bởi tia nắng mặt trời và bóng của cây trên mặt đất).

Theo Định lí 2, ta có h = 25.tan40° ≈ 20,9775 (m) = 209,775 (dm) ≈ 210 (dm).

Vậy chiều cao của tháp là khoảng 210 dm.

Lý Thuyết Hệ thức giữa hai cạnh góc vuông

Công thức tính cạnh góc vuông theo cạnh góc vuông kia và tang, côtang của các góc nhọn

Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh góc vuông kia nhân với tang góc đối hoặc côtang góc kề.

Cạnh góc vuông = (cạnh góc vuông còn lại ) × (tan góc đối) 

= (cạnh góc vuông còn lại ) × (cot góc kề)

Ví dụ 2:

Lý thuyết Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 2)

Trong tam giác ABC vuông tại A, ta có:

b=c.tanB=c.cotC;c=b.tanC=b.cotB.

Đánh giá

0

0 đánh giá