Giải SGK Toán 9 Bài 11 (Kết nối tri thức): Tỉ số lượng giác của góc nhọn

1 K

Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 9 Bài 11: Tỉ số lượng giác của góc nhọn chi tiết sách Toán 9 Tập 1 Kết nối tri thức giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 11: Tỉ số lượng giác của góc nhọn

Mở đầu trang 66 Toán 9 Tập 2: Ta có thể xác định “góc dốc” α của một đoạn đường dốc khi biết độ dài của dốc là a và độ cao của đỉnh dốc so với đường nằm ngang là h không? (H.4.1). (Trong các tòa chung cư, người ta thường thiết kế đoạn dốc cho người đi xe lăn với góc dốc bé hơn 6°).

Mở đầu trang 66 Toán 9 Tập 2 | Kết nối tri thức Giải Toán 9

Lời giải:

Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:

Theo định nghĩa tỉ số lượng giác sin, ta có sinα=ha.

Vậy ta sẽ xác định được “góc dốc” α của một đoạn đường dốc khi biết độ dài của dốc là a và độ cao của đỉnh dốc so với đường nằm ngang là h.

1. Khái niệm tỉ số lượng giác của một góc nhọn

Câu hỏi trang 67 Toán 9 Tập 1: Xét góc C của tam giác ABC vuông tại A (H.4.3). Hãy chỉ ra cạnh đối và cạnh kề của góc C.

Câu hỏi trang 67 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Lời giải:

Góc C có cạnh đối là AB và cạnh kề là AC.

HĐ1 trang 67 Toán 9 Tập 1: Cho tam giác ABC vuông tại A và tam giác A’B’C’ vuông tại A’ có B^=B'^=α. Chứng minh rằng:

a) ∆ABC ᔕ ∆A’B’C’;

b) ACBC=A'C'B'C';  ABBC=A'B'B'C';  ACAB=A'C'A'B';  ABAC=A'B'A'C'.

Lời giải:

HĐ1 trang 67 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

a) Xét ∆ABC và ∆A’B’C’ có:

A^=A'^=90°; B^=B'^=α.

Do đó ∆ABC ᔕ ∆A’B’C’ (g.g).

b) Từ ∆ABC ᔕ ∆A’B’C’ (câu a), suy ra: ABA'B'=ACA'C'=BCB'C'(tỉ lệ các cạnh tương ứng).

Từ ABA'B'=ACA'C', ta có ABAC=A'B'A'C' và (tính chất tỉ lệ thức).

Từ ACA'C'=BCB'C', ta có ACBC=A'C'B'C' (tính chất tỉ lệ thức).

Từ ABA'B'=BCB'C', ta có ABBC=A'B'B'C' (tính chất tỉ lệ thức).

Vậy ACBC=A'C'B'C';  ABBC=A'B'B'C';  ACAB=A'C'A'B';  ABAC=A'B'A'C'.

Luyện tập 1 trang 68 Toán 9 Tập 1: Cho tam giác ABC vuông tại A có AB = 5 cm, AC = 12 cm. Hãy tính các tỉ số lượng giác của góc B.

Lời giải:

Luyện tập 1 trang 68 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Xét ∆ABC vuông tại A, theo định lí Pythagore, ta có:

BC2 = AB2 + AC2 = 52 + 122 = 169 nên BC = 13 (cm).

Theo định nghĩa của tỉ số lượng giác sin, côsin, tang, côtang ta có:

sinB=ACBC=1213,  cosB=ABBC=513;  tanB=ACAB=125;  cotB=ABAC=512.

Luyện tập 1 trang 68 Toán 9 Tập 1: Cho tam giác ABC vuông tại A có AB = 5 cm, AC = 12 cm. Hãy tính các tỉ số lượng giác của góc B.

Lời giải:

Luyện tập 1 trang 68 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Xét ∆ABC vuông tại A, theo định lí Pythagore, ta có:

BC2 = AB2 + AC2 = 52 + 122 = 169 nên BC = 13 (cm).

Theo định nghĩa của tỉ số lượng giác sin, côsin, tang, côtang ta có:

sinB=ACBC=1213,  cosB=ABBC=513;  tanB=ACAB=125;  cotB=ABAC=512.

HĐ2 trang 69 Toán 9 Tập 1: Cho tam giác ABC vuông cân tại A và AB = AC = a (H.4.7a).

HĐ2 trang 69 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

a) Hãy tính BC và các tỉ số ABBC,  ACBC. Từ đó suy ra sin45°, cos45°.

b) Hãy tính các tỉ số ABAC ACAB.Từ đó suy ra tan45°, cot45°.

Lời giải:

Xét ∆ABC vuông tại A, theo định lí Pythagore, ta có:

BC2 = AB2 + AC2 = a2 + a2 = 2a2, suy ra BC=2a2=a2(cm).

∆ABC vuông tại A có AB = AC nên ∆ABC vuông cân tại A nên B^=C^=45°.

a) Ta có: ABBC=aa2=12=22 và ACBC=aa2=12=22.

Do đó sin45°=sinB=ACBC=22; cos45°=cosB=ABBC=22.

b) Ta có: ABAC=aa=1;  ACAB=aa=1.

Do đó tan45°=tanB=ACAB=1;cot45°=cotB=ABAC=1.

HĐ3 trang 69 Toán 9 Tập 1: Xét tam giác đều ABC có cạnh bằng 2a.

HĐ3 trang 69 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

a) Tính đường cao AH của tam giác ABC (H.4.7b).

b) Tính sin30°, cos30°, sin60° và cos60°.

c) Tính tan30°, cot30°, tan60° và cot60°.

Lời giải:

a) Tam giác ABC đều có đường cao AH nên AH cũng là đường trung tuyến của tam giác. Do đó H là trung điểm của BC nên BH=HC=BC2=2a2=a.

Xét ∆ABH vuông tại H, theo định lí Pythagore, ta có:

AB2 = AH2 + HB2, suy ra AH2 = AB2 – HB2 = (2a)2 – a2 = 4a2 – a2 = 3a2.

Do đó AH=3a2=a3.

b) Tam giác ABC đều nên A^=B^=C^=60°.

Tam giác ABC đều có đường cao AH nên AH cũng là đường phân giác của BAC^ của tam giác. Do đó BAH^=CAH^=12BAC^=1260°=30°.

Do đó sin30°=sinBAH^=BHAB=a2a=12;

cos30°=cosBAH^=AHAB=a32a=32;

sin60°=sinB=AHAB=a32a=32;

cos60°=cosB=BHAB=a2a=12.

c) tan30°=tanBAH^=BHAH=aa3=13=33;

cot30°=cotBAH^=AHBH=a3a=3;

tan60°=tanB=AHBH=a3a=3;

cot60°=tanABH^=BHAH=aa3=13=33.

Luyện tập 2 trang 70 Toán 9 Tập 1: Cho tam giác ABC vuông tại A có C^=45° và AB = c. Tính BC và AC theo c.

Lời giải:

Luyện tập 2 trang 70 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Ta có: tanC=ABAC, suy ra AC=ABtanC=ctan45°, mà tan45° = 1 nên AC=c1=c.

Tương tự, sinC=ABBC, suy ra BC=ABsinC=csin45°,  sin45°=22 nên BC=c22=2c2=c2.

2. Tỉ số lượng giác của hai góc phụ nhau

HĐ4 trang 70 Toán 9 Tập 1: Cho tam giác ABC vuông tại C, có A^=α,  B^=β(H.4.9). Hãy viết các tỉ số lượng giác của góc α, β theo độ dài các cạnh của tam giác ABC. Trong các tỉ số đó, cho biết các cặp tỉ số bằng nhau.

 | Kết nối tri thức Giải Toán 9

Lời giải:

Xét ∆ABC vuông tại C, theo định nghĩa tỉ số lượng giác, ta có:

sinα=BCAB;  cosα=ACAB;  tanα=BCAC;  cotα=ACBC;

sinβ=ACAB;  cosβ=BCAB;  tanβ=ACBC;  cotβ=BCAC.

Từ đó ta có: sinα = cosβ; cosα = sinβ; tanα = cosβ; cotα = tanβ.

Luyện tập 3 trang 70 Toán 9 Tập 1: Hãy giải thích tại sao sin35° = cos55°, tan35° = cot55°.

Lời giải:

Ta có sin35° = cos(90° – 35°) = 55°; tan35° = cot(90° – 35°) = cot55°.

3. Sử dụng máy tính cầm tay tính tỉ số lượng giác của một góc nhọn

Luyện tập 4 trang 71 Toán 9 Tập 1: Sử dụng MTCT tính các tỉ số lượng giác và làm tròn kết quả đến chữ số thập phân thứ ba:

a) sin40°54’;

b) cos52°15’;

c) tan69°36’;

d) cot25°18’.

Lời giải:

Luyện tập 4 trang 71 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Làm tròn đến chữ số thập phân thứ ba, ta được:

sin40°54’ ≈ 0,655; cos52°15’ ≈ 0,612; tan69°36’ ≈ 2,689; cot25°18’ ≈ 2,116.

Luyện tập 5 trang 72 Toán 9 Tập 1: Dùng MTCT, tìm các góc α (làm tròn đến phút), biết:

a) sinα = 0,3782;

b) cosα = 0,6251;

c) tanα = 2,154;

d) cotα = 3,253.

Lời giải:

Luyện tập 5 trang 72 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Vận dụng trang 72 Toán 9 Tập 1: Trở lại bài toán ở tình huống mở đầu. Trong một tòa chung cư, biết đoạn dốc vào sảnh tòa nhà dài 4 m, độ cao của đỉnh dốc bằng 0,4 m.

a) Hãy tính góc dốc.

b) Hỏi góc đó có đúng tiêu chuẩn của dốc cho người đi xe lăn không?

Lời giải:

Vận dụng trang 72 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

a) Theo định nghĩa tỉ số lượng giác sin, ta có sinα=ha=0,44=0,1, do đó α ≈ 5°44’.

b) Trong các tòa chung cư, người ta thường thiết kế đoạn dốc cho người đi xe lăn với góc dốc bé hơn 6°.

Vì α ≈ 5°44’ < 6° nên góc đó đúng tiêu chuẩn của dốc cho người đi xe lăn.

Tranh luận trang 72 Toán 9 Tập 1: Để tính khoảng cách giữa hai địa điểm A, B không đo trực tiếp được, chẳng hạn A và B là hai địa điểm ở hai bên sông, người ta lấy điểm C về phía bờ sông có chứa B sao cho tam giác ABC vuông tại B. Ở bên bờ sông chứa B, người ta đo được ACB^=α và BC = a (H.4.10). Với các dữ liệu đó, đã tính được khoảng cách AB chưa? Nếu được, hãy tính AB, biết α = 55°, a = 70 m.

Tranh luận trang 72 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Vuông cho rằng: Không thể tính được AB vì trong tam giác vuông ABC, theo định lí Pythagore, phải biết được hai cạnh mới tính được cạnh thứ ba.

Tròn khẳng định: Với các dữ liệu đã biết là có thể tính được khoảng cách AB rồi.

Em hãy cho biết ý kiến của mình.

Lời giải:

Em đồng ý với ý kiến của bạn Tròn, tức là với các dữ liệu đã biết là có thể tính được khoảng cách AB.

Giải thích: Ta có tanα=ABBC, suy ra AB = BC.tanα = a.tanα.

Với α = 55°, a = 70 m, ta có: AB = 70.tan55° ≈ 99,97 (m).

Bài tập

Bài 4.1 trang 73 Toán 9 Tập 1: Cho tam giác ABC vuông tại A. Tính các tỉ số lượng giác sin, coossin, tang, cotang của các góc nhọn B và C khi biết:

a) AB = 8 cm, BC = 17 cm;

b) AC = 0,9 cm, AB = 1,2 cm.

Lời giải:

Bài 4.1 trang 73 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

a) Xét ∆ABC vuông tại A, theo định lí Pythagore, ta có:

BC2 = AB2 + AC2

Suy ra AC2 = BC2 – AB2 = 172 – 82 = 225.

Do đó AC = 15 cm.

Xét ∆ABC vuông tại A, theo định nghĩa tỉ số lượng giác sin, côsin, tang, cotang và định lí tỉ số lượng giác của hai góc phụ nhau, ta có:

● sinB=cosC=ACBC=1517;

● cosB=sinC=ABBC=817;

● tanB=cotC=ACAB=158;

● cotB=tanC=ABAC=815.

b) Xét ∆ABC vuông tại A, theo định lí Pythagore, ta có:

BC2 = AB2 + AC2 = 1,22 + 0,92 = 2,25

Do đó BC = 1,5 cm.

Xét ∆ABC vuông tại A, theo định nghĩa tỉ số lượng giác sin, côsin, tang, cotang và định lí tỉ số lượng giác của hai góc phụ nhau, ta có:

● sinB=cosC=ACBC=0,91,5=35;

● cosB=sinC=ABBC=1,21,5=45;

● tanB=cotC=ACAB=0,91,2=34;

● cotB=tanC=ABAC=1,20,9=43.

Bài 4.2 trang 73 Toán 9 Tập 1: Cho tam giác vuông có một góc nhọn 60° và cạnh kề với góc 60° bằng 3 cm. Hãy tính cạnh đối của góc này.

Lời giải:

Xét ∆ABC có B^=60°, cạnh kề với góc B là AB = 3 cm. Ta cần tính cạnh đối của góc B là AC.

Bài 4.2 trang 73 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Theo định nghĩa tỉ số lượng giác tan, ta có tanB=ACAB.

Suy ra AC=AB.tanB=3tan60°=33(cm).

Vậy cạnh đối của góc nhọn 60° là 33 cm.

Bài 4.3 trang 73 Toán 9 Tập 1: Cho tam giác vuông có một góc nhọn bằng 30° và cạnh đối với góc này bằng 5 cm. Tính độ dài cạnh huyền của tam giác.

Lời giải:

Xét ∆ABC vuông tại A có B^=30°, cạnh đối với góc B là AC = 5 cm. Ta cần tính cạnh huyền của tam giác là BC.

Bài 4.3 trang 73 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Theo định nghĩa tỉ số lượng giác sin, ta có sinB=ACBC.

Suy ra BC=ACsinB=5sin30°=512=10(cm).

Vậy cạnh huyền của tam giác là 10 cm.

Bài 4.4 trang 73 Toán 9 Tập 1: Cho hình chữ nhật có chiều dài và chiều rộng lần lượt là 3 và √3. Tính góc giữa đường chéo và cạnh ngắn hơn của hình chữ nhật (sử dụng bảng giá trị lượng giác trang 69).

Lời giải:

Bài 4.4 trang 73 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Gọi hình chữ nhật trong bài là hình chữ nhật ABCD với chiều rộng là cạnh AD=3, chiều dài là cạnh CD = 3, đường chéo AC, góc tạo bởi đường chéo và cạnh ngắn hơn của hình chữ nhật là góc α.

Xét ∆ABC vuông tại D, theo định nghĩa tỉ số lượng giác tan, ta có:

tanα=CDAD=33=3, suy ra α = 60°.

Vậy góc giữa đường chéo và cạnh ngắn hơn của hình chữ nhật đã cho là 60°.

Bài 4.5 trang 73 Toán 9 Tập 1: a) Viết các tỉ số lượng giác sau thành tỉ số lượng giác của các góc nhỏ hơn 45°:

sin55°, cos62°, tan57°, cot64°.

b) Tính tan25°cot65°,  tan34°cot56°.

Lời giải:

a) Áp dụng định lí tỉ số lượng giác của hai góc phụ nhau, ta có:

⦁ sin55° = cos(90° – 55°) = cos35°;

⦁ cos62° = sin(90° – 62°) = sin28°;

⦁ tan57° = cot(90° – 57°) = cot33°;

⦁ cot64° = tan(90° – 64°) = tan26°.

b) Áp dụng định lí tỉ số lượng giác của hai góc phụ nhau, ta có:

tan25°cot65°=cot90°25°cot65°=cot65°cot65°=1;

⦁ tan34° – cot56° = tan34° – tan(90° – 56°) = tan34° – tan34° = 0.

Bài 4.6 trang 73 Toán 9 Tập 1: Dùng MTCT, tính (làm tròn đến chữ số thập phân thứ ba):

a) sin40°12’;

b) cos52°54’;

c) tan63°36’;

d) cot35°20’.

Lời giải:

Bài 4.6 trang 73 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Làm tròn đến chữ số thập phân thứ ba, ta được:

sin40°12’ ≈ 0,645; cos52°54’ ≈ 0,603; tan63°36’ ≈ 2,014; cot35°20’ ≈ 1,411.

Bài 4.7 trang 73 Toán 9 Tập 1: Dùng MTCT, tìm số đo của góc nhọn x (làm tròn đến phút), biết rằng:

a) sinx = 0,2368;

b) cosx = 0,6224;

c) tanx = 1,236;

d) cotx = 2,154.

Lời giải:

Bài 4.7 trang 73 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Xem thêm các bài giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Bài tập cuối chương 3

Bài 11. Tỉ số lượng giác của góc nhọn

Bài 12. Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng

Luyện tập chung trang 79

Bài tập cuối chương 4

Bài 13. Mở đầu về đường tròn

Lý thuyết Tỉ số lượng giác của góc nhọn

1. Khái niệm tỉ số lượng giác của một góc nhọn

Lý thuyết Tỉ số lượng giác của góc nhọn (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 1)

sinα=cnhđicnhhuyn;cosα=cnhkcnhhuyn;

tanα=cnhđicnhk;cotα=cnhkcnhđi.

cotα=1tanα.

sinα,cosα,tanα,cotα gọi là các tỉ số lượng giác của góc nhọn α.

Tip học thuộc nhanh:

Sin đi học

Cos không hư

Tan đoàn kết

Cotan kết đoàn

Chú ý: Nếu α là một góc nhọn thì 0<sinα<10<cosα<1tanα>0cotα>0.

Ví dụ:

Lý thuyết Tỉ số lượng giác của góc nhọn (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 2)

Theo định nghĩa của tỉ số lượng giác, ta có:

sinα=ACBC=45cosα=ABBC=35tanα=ACAB=43cotα=ABAC=34

Giá trị lượng giác của các góc 300,450,600

Lý thuyết Tỉ số lượng giác của góc nhọn (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 3)

2. Tỉ số lượng giác của hai góc phụ nhau

Định lí về tỉ số lượng giác của hai góc phụ nhau

Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tan góc này bằng côtang góc kia.

Lý thuyết Tỉ số lượng giác của góc nhọn (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 4)

Cho α và β là hai góc phụ nhau, ta có:

sinα=cosβcosα=sinβtanα=cotβcotα=tanβ.

Ví dụ:

sin600=cos(900600)=cos300;cos52030=sin(90052030)=sin37030;tan800=cot(900800)=cot100;cot820=tan(900820)=tan80.

3. Sử dụng máy tính cầm tay tính tỉ số lượng giác của một góc nhọn

Sử dụng máy tính cầm tay để tính các tỉ số lượng giác

Lý thuyết Tỉ số lượng giác của góc nhọn (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 5)

Sử dụng máy tính cầm tay để tìm được góc khi biết một trong các tỉ số lượng giác của góc đó

Lý thuyết Tỉ số lượng giác của góc nhọn (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 6)

Một số công thức mở rộng:

+) sin2α+cos2α=1

+) tanα=sinαcosα

+) cotα=cosαsinα

+) tanα.cotα=1

+) 1cos2α=tan2α+1

+) 1sin2α=cot2α+1

Đánh giá

0

0 đánh giá