Cho tam giác ABC vuông tại A, cạnh huyền a và các cạnh góc vuông b, c (H.4.12). Viết các tỉ số

367

Với giải HĐ1 trang 74 Toán 9 Tập 1 Kết nối tri thức chi tiết trong Bài 12: Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 12: Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng

HĐ1 trang 74 Toán 9 Tập 1: Cho tam giác ABC vuông tại A, cạnh huyền a và các cạnh góc vuông b, c (H.4.12).

HĐ1 trang 74 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

a) Viết các tỉ số lượng giác sin, côsin của góc B và góc C theo độ dài các cạnh của tam giác ABC.

b) Tính mỗi cạnh góc vuông b và c theo cạnh huyền a và các tỉ số lượng giác trên của góc B và góc C.

Lời giải:

a) Xét ∆ABC vuông tại A, theo định nghĩa tỉ osos lượng giác sin, côsin và định lí tỉ số lượng giác của hai góc phụ nhau, ta có:

sinB=cosC=ACBC=ba;  cosB=sinC=ABBC=ca.

b) Từ sinB=cosC=ba suy ra b = asinB = acosC.

Lý Thuyết Hệ thức giữa cạnh huyền và cạnh góc vuông

Công thức tính cạnh góc vuông theo cạnh huyền và sin, côsin của các góc nhọn

Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề.

Cạnh góc vuông = (cạnh huyền ) × (sin góc đối)

= (cạnh huyền ) × (cosin góc kề)

Ví dụ 1:

Lý thuyết Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng (Kết nối tri thức 2024) | Lý thuyết Toán 9 (ảnh 1)

Trong tam giác ABC vuông tại A, ta có:

b=a.sinB=a.cosC;c=a.sinC=a.cosB.

Đánh giá

0

0 đánh giá