Tính các tỉ số lượng giác của góc α và của góc 90° – α trong Hình 8 theo a, b, c. So sánh Sin góc B

185

Với giải Khám phá 3 trang 63 Toán 9 Tập 1 Chân trời sáng tạo chi tiết trong Bài 1: Tỉ số lượng giác của góc nhọn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 1: Tỉ số lượng giác của góc nhọn

Khám phá 3 trang 63 Toán 9 Tập 1: a) Tính các tỉ số lượng giác của góc α và của góc 90° – α trong Hình 8 theo a, b, c.

Khám phá 3 trang 63 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

b) So sánh sinB^  và cosC^ , cosB^  và sinC^ , tanB^  và cotC^ , tanC^  và cotB^.

Lời giải:

a) Xét tam giác ABC vuông tại A. Ta có:

• Các tỉ số lượng giác của góc α là:     

Khám phá 3 trang 63 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

• Các tỉ số lượng giác của góc 90° − α là:

Khám phá 3 trang 63 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

b) So sánh sinB^  và cosC^ , cosB^  và sinC^ , tanB^  và cotC^ , tanC^  và cotB^.

Ta có C^=α;  B^=90°α

Từ câu a, ta có:

Khám phá 3 trang 63 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Vậy sinB^=cosC^  ;  cosB^=sinC^;  tanB^=cotC^;  tanC^=cotB^.

Lý Thuyết Tỉ số lượng giác của hai góc phụ nhau

Định lí về tỉ số lượng giác của hai góc phụ nhau

Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tan góc này bằng côtang góc kia.

sin(900α)=cosα;cos(900α)=sinα;tan(900α)=cotα;cot(900α)=tanα.

Ví dụ:

sin600=cos(900600)=cos300;cos52030=sin(90052030)=sin37030;tan800=cot(900800)=cot100;cot820=tan(900820)=tan80.

Đánh giá

0

0 đánh giá